正则膨胀图上高斯自由场超临界水平集渗流的巨分量

IF 3.1 1区 数学 Q1 MATHEMATICS
Jiří Černý
{"title":"正则膨胀图上高斯自由场超临界水平集渗流的巨分量","authors":"Jiří Černý","doi":"10.1002/cpa.22112","DOIUrl":null,"url":null,"abstract":"<p>We consider the zero-average Gaussian free field on a certain class of finite <i>d</i>-regular graphs for fixed <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\ge 3$</annotation>\n </semantics></math>. This class includes <i>d</i>-regular expanders of large girth and typical realisations of random <i>d</i>-regular graphs. We show that the level set of the zero-average Gaussian free field above level <i>h</i> has a giant component in the whole supercritical phase, that is for all <math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>h</mi>\n <mi>★</mi>\n </msub>\n </mrow>\n <annotation>$h&lt;h_\\star$</annotation>\n </semantics></math>, with probability tending to one as the size of the graphs tends to infinity. In addition, we show that this component is unique. This significantly improves the result of [4], where it was shown that a linear fraction of vertices is in mesoscopic components if <math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>h</mi>\n <mi>★</mi>\n </msub>\n </mrow>\n <annotation>$h&lt;h_\\star$</annotation>\n </semantics></math>, and together with the description of the subcritical phase from [4] establishes a fully-fledged percolation phase transition for the model.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs\",\"authors\":\"Jiří Černý\",\"doi\":\"10.1002/cpa.22112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the zero-average Gaussian free field on a certain class of finite <i>d</i>-regular graphs for fixed <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\ge 3$</annotation>\\n </semantics></math>. This class includes <i>d</i>-regular expanders of large girth and typical realisations of random <i>d</i>-regular graphs. We show that the level set of the zero-average Gaussian free field above level <i>h</i> has a giant component in the whole supercritical phase, that is for all <math>\\n <semantics>\\n <mrow>\\n <mi>h</mi>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>h</mi>\\n <mi>★</mi>\\n </msub>\\n </mrow>\\n <annotation>$h&lt;h_\\\\star$</annotation>\\n </semantics></math>, with probability tending to one as the size of the graphs tends to infinity. In addition, we show that this component is unique. This significantly improves the result of [4], where it was shown that a linear fraction of vertices is in mesoscopic components if <math>\\n <semantics>\\n <mrow>\\n <mi>h</mi>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>h</mi>\\n <mi>★</mi>\\n </msub>\\n </mrow>\\n <annotation>$h&lt;h_\\\\star$</annotation>\\n </semantics></math>, and together with the description of the subcritical phase from [4] establishes a fully-fledged percolation phase transition for the model.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22112\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22112","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一类固定d≥3$d\ge3$的有限d正则图上的零平均高斯自由场。此类包括大周长的d-正则扩展器和随机d-正则图的典型实现。我们证明了在h能级以上的零平均高斯自由场的能级集在整个超临界相中有一个巨大的分量,即对于所有h
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs

We consider the zero-average Gaussian free field on a certain class of finite d-regular graphs for fixed d 3 $d\ge 3$ . This class includes d-regular expanders of large girth and typical realisations of random d-regular graphs. We show that the level set of the zero-average Gaussian free field above level h has a giant component in the whole supercritical phase, that is for all h < h $h<h_\star$ , with probability tending to one as the size of the graphs tends to infinity. In addition, we show that this component is unique. This significantly improves the result of [4], where it was shown that a linear fraction of vertices is in mesoscopic components if h < h $h<h_\star$ , and together with the description of the subcritical phase from [4] establishes a fully-fledged percolation phase transition for the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信