自旋模中乘法的矩阵公式

Q3 Mathematics
Lucas Fresse, S. Mehdi
{"title":"自旋模中乘法的矩阵公式","authors":"Lucas Fresse, S. Mehdi","doi":"10.46298/cm.11156","DOIUrl":null,"url":null,"abstract":"We obtain inductive and enumerative formulas for the multiplicities of the\nweights of the spin module for the Clifford algebra of a Levi subalgebra in a\ncomplex semisimple Lie algebra. Our formulas involve only matrices and\ntableaux, and our techniques combine linear algebra, Lie theory, and\ncombinatorics. Moreover, this suggests a relationship with complex nilpotent\norbits. The case of the special linear Lie algebra $\\mathfrak{sl}(n,{\\mathbb\nC})$ is emphasized.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix formulas for multiplicities in the spin module\",\"authors\":\"Lucas Fresse, S. Mehdi\",\"doi\":\"10.46298/cm.11156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain inductive and enumerative formulas for the multiplicities of the\\nweights of the spin module for the Clifford algebra of a Levi subalgebra in a\\ncomplex semisimple Lie algebra. Our formulas involve only matrices and\\ntableaux, and our techniques combine linear algebra, Lie theory, and\\ncombinatorics. Moreover, this suggests a relationship with complex nilpotent\\norbits. The case of the special linear Lie algebra $\\\\mathfrak{sl}(n,{\\\\mathbb\\nC})$ is emphasized.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.11156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了复半单李代数中Levi子代数Clifford代数的自旋模的权重的乘积的归纳和枚举公式。我们的公式只涉及矩阵和表,我们的技术结合了线性代数、李理论和组合数学。此外,这表明了与复杂幂零轨道的关系。重点讨论了特殊线性李代数$\mathfrak{sl}(n,{\mathbbC})$的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix formulas for multiplicities in the spin module
We obtain inductive and enumerative formulas for the multiplicities of the weights of the spin module for the Clifford algebra of a Levi subalgebra in a complex semisimple Lie algebra. Our formulas involve only matrices and tableaux, and our techniques combine linear algebra, Lie theory, and combinatorics. Moreover, this suggests a relationship with complex nilpotent orbits. The case of the special linear Lie algebra $\mathfrak{sl}(n,{\mathbb C})$ is emphasized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信