{"title":"自旋模中乘法的矩阵公式","authors":"Lucas Fresse, S. Mehdi","doi":"10.46298/cm.11156","DOIUrl":null,"url":null,"abstract":"We obtain inductive and enumerative formulas for the multiplicities of the\nweights of the spin module for the Clifford algebra of a Levi subalgebra in a\ncomplex semisimple Lie algebra. Our formulas involve only matrices and\ntableaux, and our techniques combine linear algebra, Lie theory, and\ncombinatorics. Moreover, this suggests a relationship with complex nilpotent\norbits. The case of the special linear Lie algebra $\\mathfrak{sl}(n,{\\mathbb\nC})$ is emphasized.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix formulas for multiplicities in the spin module\",\"authors\":\"Lucas Fresse, S. Mehdi\",\"doi\":\"10.46298/cm.11156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain inductive and enumerative formulas for the multiplicities of the\\nweights of the spin module for the Clifford algebra of a Levi subalgebra in a\\ncomplex semisimple Lie algebra. Our formulas involve only matrices and\\ntableaux, and our techniques combine linear algebra, Lie theory, and\\ncombinatorics. Moreover, this suggests a relationship with complex nilpotent\\norbits. The case of the special linear Lie algebra $\\\\mathfrak{sl}(n,{\\\\mathbb\\nC})$ is emphasized.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.11156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Matrix formulas for multiplicities in the spin module
We obtain inductive and enumerative formulas for the multiplicities of the
weights of the spin module for the Clifford algebra of a Levi subalgebra in a
complex semisimple Lie algebra. Our formulas involve only matrices and
tableaux, and our techniques combine linear algebra, Lie theory, and
combinatorics. Moreover, this suggests a relationship with complex nilpotent
orbits. The case of the special linear Lie algebra $\mathfrak{sl}(n,{\mathbb
C})$ is emphasized.
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.