用符号方法计算嵌套二项式和的Mellin表示和渐近性:RICA程序包

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Blümlein, Nikolai Fadeev, Carsten Schneider
{"title":"用符号方法计算嵌套二项式和的Mellin表示和渐近性:RICA程序包","authors":"J. Blümlein, Nikolai Fadeev, Carsten Schneider","doi":"10.1145/3614408.3614410","DOIUrl":null,"url":null,"abstract":"Nested binomial sums form a particular class of sums that arise in the context of particle physics computations at higher orders in perturbation theory within QCD and QED, but that are also mathematically relevant, e.g., in combinatorics. We present the package RICA (Rule Induced Convolutions for Asymptotics), which aims at calculating Mellin representations and asymptotic expansions at infinity of those objects. These representations are of particular interest to perform analytic continuations of such sums.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"57 1","pages":"31 - 34"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Mellin Representations and Asymptotics of Nested Binomial Sums in a Symbolic Way: The RICA Package\",\"authors\":\"J. Blümlein, Nikolai Fadeev, Carsten Schneider\",\"doi\":\"10.1145/3614408.3614410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nested binomial sums form a particular class of sums that arise in the context of particle physics computations at higher orders in perturbation theory within QCD and QED, but that are also mathematically relevant, e.g., in combinatorics. We present the package RICA (Rule Induced Convolutions for Asymptotics), which aims at calculating Mellin representations and asymptotic expansions at infinity of those objects. These representations are of particular interest to perform analytic continuations of such sums.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"57 1\",\"pages\":\"31 - 34\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3614408.3614410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3614408.3614410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

嵌套二项式和形成了一类特殊的和,这些和出现在QCD和QED中扰动理论中更高阶的粒子物理计算中,但在数学上也是相关的,例如在组合数学中。我们提出了程序包RICA(规则诱导的渐近卷积),旨在计算这些对象在无穷远处的Mellin表示和渐近展开。这些表示对于执行这些和的分析连续性特别感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Mellin Representations and Asymptotics of Nested Binomial Sums in a Symbolic Way: The RICA Package
Nested binomial sums form a particular class of sums that arise in the context of particle physics computations at higher orders in perturbation theory within QCD and QED, but that are also mathematically relevant, e.g., in combinatorics. We present the package RICA (Rule Induced Convolutions for Asymptotics), which aims at calculating Mellin representations and asymptotic expansions at infinity of those objects. These representations are of particular interest to perform analytic continuations of such sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信