Littlewood-Paley平方函数的多向量值混合范数估计

Pub Date : 2018-08-09 DOI:10.5565/publmat6622205
C. Benea, Camil Muscalu
{"title":"Littlewood-Paley平方函数的多向量值混合范数估计","authors":"C. Benea, Camil Muscalu","doi":"10.5565/publmat6622205","DOIUrl":null,"url":null,"abstract":"We prove that for any $L^Q$-valued Schwartz function $f$ defined on $\\mathbb{R}^d$, one has the multiple vector-valued, mixed norm estimate $$ \\| f \\|_{L^P(L^Q)} \\lesssim \\| S f \\|_{L^P(L^Q)} $$ valid for every $d$-tuple $P$ and every $n$-tuple $Q$ satisfying $0 < P, Q < \\infty$ componentwise. Here $S:= S_{d_1}\\otimes ... \\otimes S_{d_N}$ is a tensor product of several Littlewood-Paley square functions $S_{d_j}$ defined on arbitrary Euclidean spaces $\\mathbb{R}^{d_j}$ for $1\\leq j\\leq N$, with the property that $d_1 + ... + d_N = d$. This answers a question that came up implicitly in our recent works and completes in a natural way classical results of the Littlewood-Paley theory. The proof is based on the \\emph{helicoidal method} introduced by the authors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiple vector-valued, mixed norm estimates for Littlewood-Paley square functions\",\"authors\":\"C. Benea, Camil Muscalu\",\"doi\":\"10.5565/publmat6622205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for any $L^Q$-valued Schwartz function $f$ defined on $\\\\mathbb{R}^d$, one has the multiple vector-valued, mixed norm estimate $$ \\\\| f \\\\|_{L^P(L^Q)} \\\\lesssim \\\\| S f \\\\|_{L^P(L^Q)} $$ valid for every $d$-tuple $P$ and every $n$-tuple $Q$ satisfying $0 < P, Q < \\\\infty$ componentwise. Here $S:= S_{d_1}\\\\otimes ... \\\\otimes S_{d_N}$ is a tensor product of several Littlewood-Paley square functions $S_{d_j}$ defined on arbitrary Euclidean spaces $\\\\mathbb{R}^{d_j}$ for $1\\\\leq j\\\\leq N$, with the property that $d_1 + ... + d_N = d$. This answers a question that came up implicitly in our recent works and completes in a natural way classical results of the Littlewood-Paley theory. The proof is based on the \\\\emph{helicoidal method} introduced by the authors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了对于在$\mathbb{R}^d$上定义的任何$L^Q$值的Schwartz函数$f$,具有多向量值的混合范数估计$$f|_{L^P(L^Q)}\lesssim|Sf|_{L^P)}$$,对于满足$0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiple vector-valued, mixed norm estimates for Littlewood-Paley square functions
We prove that for any $L^Q$-valued Schwartz function $f$ defined on $\mathbb{R}^d$, one has the multiple vector-valued, mixed norm estimate $$ \| f \|_{L^P(L^Q)} \lesssim \| S f \|_{L^P(L^Q)} $$ valid for every $d$-tuple $P$ and every $n$-tuple $Q$ satisfying $0 < P, Q < \infty$ componentwise. Here $S:= S_{d_1}\otimes ... \otimes S_{d_N}$ is a tensor product of several Littlewood-Paley square functions $S_{d_j}$ defined on arbitrary Euclidean spaces $\mathbb{R}^{d_j}$ for $1\leq j\leq N$, with the property that $d_1 + ... + d_N = d$. This answers a question that came up implicitly in our recent works and completes in a natural way classical results of the Littlewood-Paley theory. The proof is based on the \emph{helicoidal method} introduced by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信