机器学习在妊娠期糖尿病高危检测中的应用

Aryo Pinandito, S. Wicaksono, S. Wijoyo
{"title":"机器学习在妊娠期糖尿病高危检测中的应用","authors":"Aryo Pinandito, S. Wicaksono, S. Wijoyo","doi":"10.25126/jtiik.20241047005","DOIUrl":null,"url":null,"abstract":"Diabetes dalam kehamilan dapat meningkatkan berbagai risiko, baik pada maternal maupun neonatus. Adanya gangguan homeostasis glukosa dalam kehamilan dapat meningkatkan terjadinya malformasi kongenital, keguguran, risiko preeklampsia, Cepalo Pelvik Dispropotion (CPD), kelahiran prematur, kelainan letak, plasenta previa dan hipoglikemia neonatus. Oleh karena itu, diperlukan perhatian dan penanganan menyeluruh bagi ibu hamil yang menderita diabetes. Teknologi machine learning dapat dimanfaatkan dalam berbagai hal di bidang kesehatan. Salah satu dari pemanfaatan machine learning di bidang kesehatan adalah kemampuannya untuk mendeteksi risiko tinggi diabetus mellitus pada ibu hamil melalui berbagai data dan informasi seperti nama, usia, umur kehamilan, gravida, para, riwayat kehamilan, riwayat penyakit yang pernah diderita, faktor risiko, dan riwayat persalinan yang lalu. Proses persalinan ibu hamil dipengaruhi oleh faktor fisiologis dan faktor-faktor risiko lain yang dapat mempengaruhinya. Penelitian ini menggunakan dataset yang diperoleh dari data pemeriksaan ibu hamil di Puskesmas Lawang dari bulan Januari 2021 sampai dengan Agustus 2021 dan menggunakan16 atribut penting, yaitu: tanggal pengkajian, nama, tanggal HPHT, tanggal HPL, umur, GPA, usia kehamilan, KSPR, keterangan KSPR, IMT, kategori IMT, reduksi, albumin, hepatitis, HIV, dan IMS. Penelitian ini telah melakukan tahapan pengumpulan data, perancangan, implementasi, pengujian dan analisis data yang mengimplementasikan teknik machine learning K-Nearest Neighbor (KNN). Nilai akurasi tertinggi pada skenario pengujian pertama dengan atribut k=2 adalah 70.27%. Nilai akurasi tertinggi pada skenario pengujian kedua dengan k=3 adalah 75.68%. Nilai akurasi tertinggi pada skenario pengujian ketiga dengan k=4 adalah 78.38%. Sedangkan Nilai akurasi tertinggi pada skenario pengujian keempat dengan k=5 adalah 77.03%. Nilai akurasi tertinggi dicapai pada rasio sebesar 7:3 antara data latih dengan data testing. AbstractDiabetes in pregnancy can increase various risks, both maternal and neonatal. Disorders of glucose homeostasis in pregnancy can increase the occurrence of congenital malformations, miscarriage, risk of preeclampsia, Cepalo Pelvic Dispropotion (CPD), premature birth, malformations, placenta previa and neonatal hypoglycemia. Thorough attention and treatment is needed for pregnancy with diabetes. Machine learning technology can be used to detect the risk of diabetes mellitus in pregnancy. Several data such as name, age, gestational age, gravida, para, past pregnancy history, past medical history, risk factors, and past birth history were used in the risk detection. Delivery process in pregnancy is affected by the physiologic of prospective mother and several other risk factors.The dataset used in this study was 248 examination data of pregnancy check up at the Lawang Health Center from January 2021 to August 2021. The study used 16 attributes in determining the risk, i.e., date of assessment, name of mother, date of HPHT, date of HPL, age, GPA, gestational age, KSPR, KSPR information, BMI, BMI category, reduction, albumin, hepatitis, HIV, and STIs. This study has follow the implementation stages of data collection, design, implementation, testing and data analysis. The highest accuracy for the first test scenario with k=2 is 70.27%. The highest accuracy for the second test scenario with k=3 is 75.68%. The highest accuracy for the third test scenario with k=4 is 78.38%. While the highest accuracy for the fourth test scenario with k=5 is 77.03%. Highest accuracies were achieved with the distribution ratio of 7:3 between training and testing data.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Machine Learning dalam Deteksi Risiko Tinggi Diabetes Melitus pada Kehamilan\",\"authors\":\"Aryo Pinandito, S. Wicaksono, S. Wijoyo\",\"doi\":\"10.25126/jtiik.20241047005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes dalam kehamilan dapat meningkatkan berbagai risiko, baik pada maternal maupun neonatus. Adanya gangguan homeostasis glukosa dalam kehamilan dapat meningkatkan terjadinya malformasi kongenital, keguguran, risiko preeklampsia, Cepalo Pelvik Dispropotion (CPD), kelahiran prematur, kelainan letak, plasenta previa dan hipoglikemia neonatus. Oleh karena itu, diperlukan perhatian dan penanganan menyeluruh bagi ibu hamil yang menderita diabetes. Teknologi machine learning dapat dimanfaatkan dalam berbagai hal di bidang kesehatan. Salah satu dari pemanfaatan machine learning di bidang kesehatan adalah kemampuannya untuk mendeteksi risiko tinggi diabetus mellitus pada ibu hamil melalui berbagai data dan informasi seperti nama, usia, umur kehamilan, gravida, para, riwayat kehamilan, riwayat penyakit yang pernah diderita, faktor risiko, dan riwayat persalinan yang lalu. Proses persalinan ibu hamil dipengaruhi oleh faktor fisiologis dan faktor-faktor risiko lain yang dapat mempengaruhinya. Penelitian ini menggunakan dataset yang diperoleh dari data pemeriksaan ibu hamil di Puskesmas Lawang dari bulan Januari 2021 sampai dengan Agustus 2021 dan menggunakan16 atribut penting, yaitu: tanggal pengkajian, nama, tanggal HPHT, tanggal HPL, umur, GPA, usia kehamilan, KSPR, keterangan KSPR, IMT, kategori IMT, reduksi, albumin, hepatitis, HIV, dan IMS. Penelitian ini telah melakukan tahapan pengumpulan data, perancangan, implementasi, pengujian dan analisis data yang mengimplementasikan teknik machine learning K-Nearest Neighbor (KNN). Nilai akurasi tertinggi pada skenario pengujian pertama dengan atribut k=2 adalah 70.27%. Nilai akurasi tertinggi pada skenario pengujian kedua dengan k=3 adalah 75.68%. Nilai akurasi tertinggi pada skenario pengujian ketiga dengan k=4 adalah 78.38%. Sedangkan Nilai akurasi tertinggi pada skenario pengujian keempat dengan k=5 adalah 77.03%. Nilai akurasi tertinggi dicapai pada rasio sebesar 7:3 antara data latih dengan data testing. AbstractDiabetes in pregnancy can increase various risks, both maternal and neonatal. Disorders of glucose homeostasis in pregnancy can increase the occurrence of congenital malformations, miscarriage, risk of preeclampsia, Cepalo Pelvic Dispropotion (CPD), premature birth, malformations, placenta previa and neonatal hypoglycemia. Thorough attention and treatment is needed for pregnancy with diabetes. Machine learning technology can be used to detect the risk of diabetes mellitus in pregnancy. Several data such as name, age, gestational age, gravida, para, past pregnancy history, past medical history, risk factors, and past birth history were used in the risk detection. Delivery process in pregnancy is affected by the physiologic of prospective mother and several other risk factors.The dataset used in this study was 248 examination data of pregnancy check up at the Lawang Health Center from January 2021 to August 2021. The study used 16 attributes in determining the risk, i.e., date of assessment, name of mother, date of HPHT, date of HPL, age, GPA, gestational age, KSPR, KSPR information, BMI, BMI category, reduction, albumin, hepatitis, HIV, and STIs. This study has follow the implementation stages of data collection, design, implementation, testing and data analysis. The highest accuracy for the first test scenario with k=2 is 70.27%. The highest accuracy for the second test scenario with k=3 is 75.68%. The highest accuracy for the third test scenario with k=4 is 78.38%. While the highest accuracy for the fourth test scenario with k=5 is 77.03%. Highest accuracies were achieved with the distribution ratio of 7:3 between training and testing data.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.20241047005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241047005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

妊娠期糖尿病会增加产妇和新生儿的各种风险。孕妇存在葡萄糖稳态障碍,可能会增加先天畸形、衰竭、先兆子痫风险、Cepalo-Pelvik畸形(CPD)、早产、胎盘错位、胎盘前和新生儿低血糖。因此,需要对患有糖尿病的孕妇给予充分的关注和护理。机器学习技术可以用于健康的许多方面。机器学习在健康方面的优势之一是它能够通过各种数据和信息,如姓名、年龄、怀孕年龄、怀孕、孩子、妊娠史、既往病史、风险因素和既往移植史,来检测孕妇患糖尿病的高风险。妊娠-妊娠过程受到生理因素和其他可能影响它的风险因素的影响。本研究使用了从2021年1月至2021年8月劳动力的妊娠检查数据中获得的一组数据,并使用了16个重要属性,即:研究日期、姓名、HPHT日期、HPL日期、年龄、GPA、妊娠年龄、KSPR、KSPR声明、IMT、IMT类别、减少、白蛋白、肝炎、HIV和IMS。本研究进行了实现K近邻(KNN)机器学习技术的数据收集、设计、实现、测试和分析阶段。k=2属性的第一个测试场景的最高准确率为70.27%。k=3的第二个测试场景中的最高准确度为75.68%。k=4的第三个测试场景最高准确度值为78.38%。k=5的第四个测试场景最大准确率值为77.03%。以7:3的比例达到最高准确度在训练数据和测试数据之间。妊娠期糖尿病会增加产妇和新生儿的各种风险。妊娠期葡萄糖稳态紊乱会增加先天畸形、流产、先兆子痫、Cepalo Pelvic Disproption(CPD)、早产、畸形、前置胎盘和新生儿低血糖的发生。妊娠期糖尿病需要彻底的关注和治疗。机器学习技术可用于检测妊娠期糖尿病的风险。风险检测中使用了一些数据,如姓名、年龄、胎龄、孕妇、既往妊娠史、既往病史、危险因素和既往出生史。怀孕期间的分娩过程受到准妈妈生理和其他几个危险因素的影响。本研究使用的数据集是拉旺卫生中心2021年1月至2021年8月的248次妊娠检查数据。该研究使用了16个属性来确定风险,即评估日期、母亲姓名、HPHT日期、HPL日期、年龄、GPA、胎龄、KSPR、KSPR信息、BMI、BMI类别、降低、白蛋白、肝炎、HIV和性传播感染。本研究遵循了数据收集、设计、实施、测试和数据分析的实施阶段。k=2的第一个测试场景的最高精度为70.27%。k=3的第二个测试场景最高精度为75.68%。k=4的第三个测试场景最大精度为78.38%。k=5的第四个测试场景最小精度为77.03%。训练和测试数据之间的分配比为7:3时,获得了最高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Machine Learning dalam Deteksi Risiko Tinggi Diabetes Melitus pada Kehamilan
Diabetes dalam kehamilan dapat meningkatkan berbagai risiko, baik pada maternal maupun neonatus. Adanya gangguan homeostasis glukosa dalam kehamilan dapat meningkatkan terjadinya malformasi kongenital, keguguran, risiko preeklampsia, Cepalo Pelvik Dispropotion (CPD), kelahiran prematur, kelainan letak, plasenta previa dan hipoglikemia neonatus. Oleh karena itu, diperlukan perhatian dan penanganan menyeluruh bagi ibu hamil yang menderita diabetes. Teknologi machine learning dapat dimanfaatkan dalam berbagai hal di bidang kesehatan. Salah satu dari pemanfaatan machine learning di bidang kesehatan adalah kemampuannya untuk mendeteksi risiko tinggi diabetus mellitus pada ibu hamil melalui berbagai data dan informasi seperti nama, usia, umur kehamilan, gravida, para, riwayat kehamilan, riwayat penyakit yang pernah diderita, faktor risiko, dan riwayat persalinan yang lalu. Proses persalinan ibu hamil dipengaruhi oleh faktor fisiologis dan faktor-faktor risiko lain yang dapat mempengaruhinya. Penelitian ini menggunakan dataset yang diperoleh dari data pemeriksaan ibu hamil di Puskesmas Lawang dari bulan Januari 2021 sampai dengan Agustus 2021 dan menggunakan16 atribut penting, yaitu: tanggal pengkajian, nama, tanggal HPHT, tanggal HPL, umur, GPA, usia kehamilan, KSPR, keterangan KSPR, IMT, kategori IMT, reduksi, albumin, hepatitis, HIV, dan IMS. Penelitian ini telah melakukan tahapan pengumpulan data, perancangan, implementasi, pengujian dan analisis data yang mengimplementasikan teknik machine learning K-Nearest Neighbor (KNN). Nilai akurasi tertinggi pada skenario pengujian pertama dengan atribut k=2 adalah 70.27%. Nilai akurasi tertinggi pada skenario pengujian kedua dengan k=3 adalah 75.68%. Nilai akurasi tertinggi pada skenario pengujian ketiga dengan k=4 adalah 78.38%. Sedangkan Nilai akurasi tertinggi pada skenario pengujian keempat dengan k=5 adalah 77.03%. Nilai akurasi tertinggi dicapai pada rasio sebesar 7:3 antara data latih dengan data testing. AbstractDiabetes in pregnancy can increase various risks, both maternal and neonatal. Disorders of glucose homeostasis in pregnancy can increase the occurrence of congenital malformations, miscarriage, risk of preeclampsia, Cepalo Pelvic Dispropotion (CPD), premature birth, malformations, placenta previa and neonatal hypoglycemia. Thorough attention and treatment is needed for pregnancy with diabetes. Machine learning technology can be used to detect the risk of diabetes mellitus in pregnancy. Several data such as name, age, gestational age, gravida, para, past pregnancy history, past medical history, risk factors, and past birth history were used in the risk detection. Delivery process in pregnancy is affected by the physiologic of prospective mother and several other risk factors.The dataset used in this study was 248 examination data of pregnancy check up at the Lawang Health Center from January 2021 to August 2021. The study used 16 attributes in determining the risk, i.e., date of assessment, name of mother, date of HPHT, date of HPL, age, GPA, gestational age, KSPR, KSPR information, BMI, BMI category, reduction, albumin, hepatitis, HIV, and STIs. This study has follow the implementation stages of data collection, design, implementation, testing and data analysis. The highest accuracy for the first test scenario with k=2 is 70.27%. The highest accuracy for the second test scenario with k=3 is 75.68%. The highest accuracy for the third test scenario with k=4 is 78.38%. While the highest accuracy for the fourth test scenario with k=5 is 77.03%. Highest accuracies were achieved with the distribution ratio of 7:3 between training and testing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信