Heisenberg群上双线性Riesz均值的极大估计

Pub Date : 2022-10-26 DOI:10.11650/tjm/230802
Min Wang, Hua Zhu
{"title":"Heisenberg群上双线性Riesz均值的极大估计","authors":"Min Wang, Hua Zhu","doi":"10.11650/tjm/230802","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the maximal bilinear Riesz means $S^{\\alpha }_{*}$ associated to the sublaplacian on the Heisenberg group. We prove that the operator $S^{\\alpha }_{*}$ is bounded from $L^{p_{1}}\\times L^{p_{2}}$ into $% L^{p}$ for $2\\leq p_{1}, p_{2}\\leq \\infty $ and $1/p=1/p_{1}+1/p_{2}$ when $% \\alpha $ is large than a suitable smoothness index $\\alpha (p_{1},p_{2})$. For obtaining a lower index $\\alpha (p_{1},p_{2})$, we define two important auxiliary operators and investigate their $L^{p}$ estimates,which play a key role in our proof.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Estimates for the Bilinear Riesz Means on Heisenberg Groups\",\"authors\":\"Min Wang, Hua Zhu\",\"doi\":\"10.11650/tjm/230802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the maximal bilinear Riesz means $S^{\\\\alpha }_{*}$ associated to the sublaplacian on the Heisenberg group. We prove that the operator $S^{\\\\alpha }_{*}$ is bounded from $L^{p_{1}}\\\\times L^{p_{2}}$ into $% L^{p}$ for $2\\\\leq p_{1}, p_{2}\\\\leq \\\\infty $ and $1/p=1/p_{1}+1/p_{2}$ when $% \\\\alpha $ is large than a suitable smoothness index $\\\\alpha (p_{1},p_{2})$. For obtaining a lower index $\\\\alpha (p_{1},p_{2})$, we define two important auxiliary operators and investigate their $L^{p}$ estimates,which play a key role in our proof.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/230802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了与海森堡群上的次拉普拉斯算子相关的最大双线性Riesz均值$S^{\alpha}_{*}$。我们证明了当$%\alpha$大于合适的光滑度指数$\alpha(p_{1},p_{2})$时,算子$S^{\alpha}_{*}$从$L^{p_{1}}\timesL^{p_{2}$有界到$%L^{p}$(对于$2\leqp_{1},p_{2}\leq\infty$和$1/p=1/p_{1{+1/p{2}$)。为了获得较低的索引$\alpha(p_{1},p_{2})$,我们定义了两个重要的辅助算子,并研究了它们的$L^{p}$估计,这在我们的证明中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maximal Estimates for the Bilinear Riesz Means on Heisenberg Groups
In this article, we investigate the maximal bilinear Riesz means $S^{\alpha }_{*}$ associated to the sublaplacian on the Heisenberg group. We prove that the operator $S^{\alpha }_{*}$ is bounded from $L^{p_{1}}\times L^{p_{2}}$ into $% L^{p}$ for $2\leq p_{1}, p_{2}\leq \infty $ and $1/p=1/p_{1}+1/p_{2}$ when $% \alpha $ is large than a suitable smoothness index $\alpha (p_{1},p_{2})$. For obtaining a lower index $\alpha (p_{1},p_{2})$, we define two important auxiliary operators and investigate their $L^{p}$ estimates,which play a key role in our proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信