Dongliang Wang, Xin Su, Zongliang Fan, Zhuoyu Wen, Ning Li, Yong Yang
{"title":"苯甲基化选择性催化研究进展:反应、形状选择性及展望","authors":"Dongliang Wang, Xin Su, Zongliang Fan, Zhuoyu Wen, Ning Li, Yong Yang","doi":"10.1007/s10563-021-09337-5","DOIUrl":null,"url":null,"abstract":"<div><p>Benzene methylation over zeolite offers an alternative route to produce high-value toluene or <i>para</i>-xylene directly from benzene and C<sub>1</sub> chemical sources, especially for countries with a shortage of crude oil but abundant coal, natural gas, or biomass. It also serves as a green “molecular engineering” to reduce costs of energy intensive separation for C<sub>8</sub> isomers by selective catalysis. Since numerous zeolite-based catalysts have been synthesized, characterized and evaluated in alkylation process, this review aims to present the roles of the zeolite topology and acidity in selective catalysis based on the reaction network and mechanisms for benzene methylation system during the recent years. It covers concise details in the shape-selective catalysis of zeolite topology and acidity to provide a theoretical basis of the chemical modification under reaction conditions, which give directions to or identify the catalyst design for benzene methylation, and also will provide the mechanistic insights and technical reference as an integral part of other aromatics production.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10563-021-09337-5","citationCount":"7","resultStr":"{\"title\":\"Recent Advances for Selective Catalysis in Benzene Methylation: Reactions, Shape-Selectivity and Perspectives\",\"authors\":\"Dongliang Wang, Xin Su, Zongliang Fan, Zhuoyu Wen, Ning Li, Yong Yang\",\"doi\":\"10.1007/s10563-021-09337-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzene methylation over zeolite offers an alternative route to produce high-value toluene or <i>para</i>-xylene directly from benzene and C<sub>1</sub> chemical sources, especially for countries with a shortage of crude oil but abundant coal, natural gas, or biomass. It also serves as a green “molecular engineering” to reduce costs of energy intensive separation for C<sub>8</sub> isomers by selective catalysis. Since numerous zeolite-based catalysts have been synthesized, characterized and evaluated in alkylation process, this review aims to present the roles of the zeolite topology and acidity in selective catalysis based on the reaction network and mechanisms for benzene methylation system during the recent years. It covers concise details in the shape-selective catalysis of zeolite topology and acidity to provide a theoretical basis of the chemical modification under reaction conditions, which give directions to or identify the catalyst design for benzene methylation, and also will provide the mechanistic insights and technical reference as an integral part of other aromatics production.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10563-021-09337-5\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-021-09337-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09337-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Advances for Selective Catalysis in Benzene Methylation: Reactions, Shape-Selectivity and Perspectives
Benzene methylation over zeolite offers an alternative route to produce high-value toluene or para-xylene directly from benzene and C1 chemical sources, especially for countries with a shortage of crude oil but abundant coal, natural gas, or biomass. It also serves as a green “molecular engineering” to reduce costs of energy intensive separation for C8 isomers by selective catalysis. Since numerous zeolite-based catalysts have been synthesized, characterized and evaluated in alkylation process, this review aims to present the roles of the zeolite topology and acidity in selective catalysis based on the reaction network and mechanisms for benzene methylation system during the recent years. It covers concise details in the shape-selective catalysis of zeolite topology and acidity to provide a theoretical basis of the chemical modification under reaction conditions, which give directions to or identify the catalyst design for benzene methylation, and also will provide the mechanistic insights and technical reference as an integral part of other aromatics production.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.