由Lévy驱动的Ornstein-Uhlenbeck过程控制的隐含波动性的非参数推理

IF 0.3 Q4 BUSINESS, FINANCE
F. A. Fard, Armin Pourkhanali, M. Sy
{"title":"由Lévy驱动的Ornstein-Uhlenbeck过程控制的隐含波动性的非参数推理","authors":"F. A. Fard, Armin Pourkhanali, M. Sy","doi":"10.3233/AF-180200","DOIUrl":null,"url":null,"abstract":"We provide a non-parametric method for stochastic volatility modelling. Our method allows the implied volatility to be governed by a general Levy-driven Ornstein–Uhlenbeck process, the density function of which is hidden to market participants. Using discrete-time observation we estimate the density function of the stochastic volatility process via developing a cumulant M-estimator for the Levy measure. In contrast to other non-parametric estimators (such as kernel estimators), our estimator is guaranteed to be of the correct type. We implement this method with the aid of a support-reduction algorithm, which is an efficient iterative unconstrained optimisation method. For the empirical analysis, we use discretely observed data from two implied volatility indices, VIX and VDAX. We also present an out-of-sample test to compare the performance of our method with other parametric models.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"7 1","pages":"15-30"},"PeriodicalIF":0.3000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-180200","citationCount":"0","resultStr":"{\"title\":\"A non-parametric inference for implied volatility governed by a Lévy-driven Ornstein-Uhlenbeck process\",\"authors\":\"F. A. Fard, Armin Pourkhanali, M. Sy\",\"doi\":\"10.3233/AF-180200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a non-parametric method for stochastic volatility modelling. Our method allows the implied volatility to be governed by a general Levy-driven Ornstein–Uhlenbeck process, the density function of which is hidden to market participants. Using discrete-time observation we estimate the density function of the stochastic volatility process via developing a cumulant M-estimator for the Levy measure. In contrast to other non-parametric estimators (such as kernel estimators), our estimator is guaranteed to be of the correct type. We implement this method with the aid of a support-reduction algorithm, which is an efficient iterative unconstrained optimisation method. For the empirical analysis, we use discretely observed data from two implied volatility indices, VIX and VDAX. We also present an out-of-sample test to compare the performance of our method with other parametric models.\",\"PeriodicalId\":42207,\"journal\":{\"name\":\"Algorithmic Finance\",\"volume\":\"7 1\",\"pages\":\"15-30\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/AF-180200\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/AF-180200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-180200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们为随机波动率建模提供了一种非参数方法。我们的方法允许隐含波动率由一般的Levy驱动的Ornstein–Uhlenbeck过程控制,该过程的密度函数对市场参与者来说是隐藏的。利用离散时间观测,我们通过开发Levy测度的累积量M-估计器来估计随机波动过程的密度函数。与其他非参数估计量(如核估计量)相比,我们的估计量被保证是正确的类型。我们在支持减少算法的帮助下实现了这种方法,这是一种有效的迭代无约束优化方法。在实证分析中,我们使用了两个隐含波动率指数VIX和VDAX的离散观测数据。我们还提供了一个样本外测试,将我们的方法与其他参数模型的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-parametric inference for implied volatility governed by a Lévy-driven Ornstein-Uhlenbeck process
We provide a non-parametric method for stochastic volatility modelling. Our method allows the implied volatility to be governed by a general Levy-driven Ornstein–Uhlenbeck process, the density function of which is hidden to market participants. Using discrete-time observation we estimate the density function of the stochastic volatility process via developing a cumulant M-estimator for the Levy measure. In contrast to other non-parametric estimators (such as kernel estimators), our estimator is guaranteed to be of the correct type. We implement this method with the aid of a support-reduction algorithm, which is an efficient iterative unconstrained optimisation method. For the empirical analysis, we use discretely observed data from two implied volatility indices, VIX and VDAX. We also present an out-of-sample test to compare the performance of our method with other parametric models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信