空间形式中奇异极小超曲面的第一个$$\frac{2}{n}$$稳定性特征值

Pub Date : 2022-10-21 DOI:10.1007/s10455-022-09880-y
Ha Tuan Dung, Nguyen Thac Dung, Juncheol Pyo
{"title":"空间形式中奇异极小超曲面的第一个$$\\frac{2}{n}$$稳定性特征值","authors":"Ha Tuan Dung,&nbsp;Nguyen Thac Dung,&nbsp;Juncheol Pyo","doi":"10.1007/s10455-022-09880-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the first <span>\\(\\frac{2}{n}\\)</span>-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of <span>\\(\\frac{2}{n}\\)</span>-stable eigenvalue. We emphasize that this result is even new in the regular setting.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First \\\\(\\\\frac{2}{n}\\\\)-stability eigenvalue of singular minimal hypersurfaces in space forms\",\"authors\":\"Ha Tuan Dung,&nbsp;Nguyen Thac Dung,&nbsp;Juncheol Pyo\",\"doi\":\"10.1007/s10455-022-09880-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the first <span>\\\\(\\\\frac{2}{n}\\\\)</span>-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of <span>\\\\(\\\\frac{2}{n}\\\\)</span>-stable eigenvalue. We emphasize that this result is even new in the regular setting.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09880-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09880-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了空间形式奇异极小超曲面的第一个稳定特征值。我们根据\(\ frac{2}{n}\)稳定的特征值,给出了空间形式的链状体的特征。我们强调,这一结果在常规环境中甚至是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
First \(\frac{2}{n}\)-stability eigenvalue of singular minimal hypersurfaces in space forms

In this paper, we study the first \(\frac{2}{n}\)-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of \(\frac{2}{n}\)-stable eigenvalue. We emphasize that this result is even new in the regular setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信