{"title":"空间形式中奇异极小超曲面的第一个$$\\frac{2}{n}$$稳定性特征值","authors":"Ha Tuan Dung, Nguyen Thac Dung, Juncheol Pyo","doi":"10.1007/s10455-022-09880-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the first <span>\\(\\frac{2}{n}\\)</span>-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of <span>\\(\\frac{2}{n}\\)</span>-stable eigenvalue. We emphasize that this result is even new in the regular setting.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First \\\\(\\\\frac{2}{n}\\\\)-stability eigenvalue of singular minimal hypersurfaces in space forms\",\"authors\":\"Ha Tuan Dung, Nguyen Thac Dung, Juncheol Pyo\",\"doi\":\"10.1007/s10455-022-09880-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the first <span>\\\\(\\\\frac{2}{n}\\\\)</span>-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of <span>\\\\(\\\\frac{2}{n}\\\\)</span>-stable eigenvalue. We emphasize that this result is even new in the regular setting.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09880-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09880-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First \(\frac{2}{n}\)-stability eigenvalue of singular minimal hypersurfaces in space forms
In this paper, we study the first \(\frac{2}{n}\)-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of \(\frac{2}{n}\)-stable eigenvalue. We emphasize that this result is even new in the regular setting.