使用协方差表在地质统计学中使用异位次级数据

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
C. A. S. Oliveira, J. Kloeckner, Á. L. Rodrigues, M. Bassani, J. F. Coimbra Leite Costa
{"title":"使用协方差表在地质统计学中使用异位次级数据","authors":"C. A. S. Oliveira, J. Kloeckner, Á. L. Rodrigues, M. Bassani, J. F. Coimbra Leite Costa","doi":"10.1080/25726838.2019.1694326","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mining projects often contain secondary data spatially correlated with the main variable of interest (primary). These secondary data are usually more densely sampled than the primary (heterotopic) dataset, as they are cheaper and faster to obtain. In this situation, the use of secondary data in geostatistical modelling improves the quality of the final estimated/simulated models. The main geostatistical methodology used to integrate these two types of data is cokriging, which requires the joint modelling of direct and cross variograms using the linear model of coregionalisation (LMC). This article shows a methodology for estimation/simulation with heterotopic secondary data that does not require the LMC. The spatial continuity will be described by covariance tables (direct and cross). A case study is presented to compare the proposed methodology with the estimates/simulations using the LMC. The results were satisfactory, as the estimated and simulated models with covariance tables were properly validated.","PeriodicalId":43298,"journal":{"name":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","volume":"129 1","pages":"15 - 26"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726838.2019.1694326","citationCount":"3","resultStr":"{\"title\":\"Use of heterotopic secondary data in geostatistics using covariance tables\",\"authors\":\"C. A. S. Oliveira, J. Kloeckner, Á. L. Rodrigues, M. Bassani, J. F. Coimbra Leite Costa\",\"doi\":\"10.1080/25726838.2019.1694326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Mining projects often contain secondary data spatially correlated with the main variable of interest (primary). These secondary data are usually more densely sampled than the primary (heterotopic) dataset, as they are cheaper and faster to obtain. In this situation, the use of secondary data in geostatistical modelling improves the quality of the final estimated/simulated models. The main geostatistical methodology used to integrate these two types of data is cokriging, which requires the joint modelling of direct and cross variograms using the linear model of coregionalisation (LMC). This article shows a methodology for estimation/simulation with heterotopic secondary data that does not require the LMC. The spatial continuity will be described by covariance tables (direct and cross). A case study is presented to compare the proposed methodology with the estimates/simulations using the LMC. The results were satisfactory, as the estimated and simulated models with covariance tables were properly validated.\",\"PeriodicalId\":43298,\"journal\":{\"name\":\"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"129 1\",\"pages\":\"15 - 26\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25726838.2019.1694326\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726838.2019.1694326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726838.2019.1694326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

摘要采矿项目通常包含与感兴趣的主要变量(主要变量)在空间上相关的次要数据。这些次要数据通常比主要(异位)数据集采样更密集,因为它们更便宜、更快地获得。在这种情况下,在地质统计建模中使用二次数据可以提高最终估计/模拟模型的质量。用于整合这两类数据的主要地质统计学方法是协同克里格法,它需要使用线性区域化模型(LMC)对直接变差函数和交叉变差函数进行联合建模。本文展示了一种利用不需要LMC的异位次级数据进行估计/模拟的方法。空间连续性将通过协方差表(直接和交叉)来描述。给出了一个案例研究,将所提出的方法与使用LMC的估计/模拟进行比较。结果是令人满意的,因为带有协方差表的估计和模拟模型得到了适当的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of heterotopic secondary data in geostatistics using covariance tables
ABSTRACT Mining projects often contain secondary data spatially correlated with the main variable of interest (primary). These secondary data are usually more densely sampled than the primary (heterotopic) dataset, as they are cheaper and faster to obtain. In this situation, the use of secondary data in geostatistical modelling improves the quality of the final estimated/simulated models. The main geostatistical methodology used to integrate these two types of data is cokriging, which requires the joint modelling of direct and cross variograms using the linear model of coregionalisation (LMC). This article shows a methodology for estimation/simulation with heterotopic secondary data that does not require the LMC. The spatial continuity will be described by covariance tables (direct and cross). A case study is presented to compare the proposed methodology with the estimates/simulations using the LMC. The results were satisfactory, as the estimated and simulated models with covariance tables were properly validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信