多项式的平移不变线性空间

IF 0.5 3区 数学 Q3 MATHEMATICS
G. Kiss, M. Laczkovich
{"title":"多项式的平移不变线性空间","authors":"G. Kiss, M. Laczkovich","doi":"10.4064/fm140-10-2022","DOIUrl":null,"url":null,"abstract":"A set of polynomials M is called a submodule of C[x1, . . . , xn] if M is a translation invariant linear subspace of C[x1, . . . , xn]. We present a description of the submodules of C[x, y] in terms of a special type of submodules. We say that the submodule M of C[x, y] is an Lmodule of order s if, whenever F (x, y) = ∑N n=0 fn(x) · y n ∈ M is such that f0 = . . . = fs−1 = 0, then F = 0. We show that the proper submodules of C[x, y] are the sums Md+M , where Md = {F ∈ C[x, y] : deg xF < d}, and M is an L-module. We give a construction of L-modules parametrized by sequences of complex numbers. A submodule M ⊂ C[x1, . . . , xn] is decomposable if it is the sum of finitely many proper submodules of M . Otherwise M is indecomposable. It is easy to see that every submodule of C[x1, . . . , xn] is the sum of finitely many indecomposable submodules. In C[x, y] every indecomposable submodule is either an L-module or equals Md for some d. In the other direction we show that Md is indecomposable for every d, and so is every L-module of order 1. Finally, we prove that there exists a submodule of C[x, y] (in fact, an L-module of order 1) which is not relatively closed in C[x, y]. This answers a problem posed by L. Székelyhidi in 2011.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translation invariant linear spaces of polynomials\",\"authors\":\"G. Kiss, M. Laczkovich\",\"doi\":\"10.4064/fm140-10-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of polynomials M is called a submodule of C[x1, . . . , xn] if M is a translation invariant linear subspace of C[x1, . . . , xn]. We present a description of the submodules of C[x, y] in terms of a special type of submodules. We say that the submodule M of C[x, y] is an Lmodule of order s if, whenever F (x, y) = ∑N n=0 fn(x) · y n ∈ M is such that f0 = . . . = fs−1 = 0, then F = 0. We show that the proper submodules of C[x, y] are the sums Md+M , where Md = {F ∈ C[x, y] : deg xF < d}, and M is an L-module. We give a construction of L-modules parametrized by sequences of complex numbers. A submodule M ⊂ C[x1, . . . , xn] is decomposable if it is the sum of finitely many proper submodules of M . Otherwise M is indecomposable. It is easy to see that every submodule of C[x1, . . . , xn] is the sum of finitely many indecomposable submodules. In C[x, y] every indecomposable submodule is either an L-module or equals Md for some d. In the other direction we show that Md is indecomposable for every d, and so is every L-module of order 1. Finally, we prove that there exists a submodule of C[x, y] (in fact, an L-module of order 1) which is not relatively closed in C[x, y]. This answers a problem posed by L. Székelyhidi in 2011.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm140-10-2022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm140-10-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果M是C[x1,…,xn]的平移不变线性子空间,则一组多项式M被称为C[x1、…、xn]的子模。我们用一种特殊类型的子模来描述C[x,y]的子模。我们说C[x,y]的子模M是s阶的L模,如果当F(x,y)=∑N N=0 fn(x)·y N∈M时,f0=…=fs−1=0,则F=0。我们证明了C[x,y]的适当子模是Md+M的和,其中Md={F∈C[x、y]:deg xF本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Translation invariant linear spaces of polynomials
A set of polynomials M is called a submodule of C[x1, . . . , xn] if M is a translation invariant linear subspace of C[x1, . . . , xn]. We present a description of the submodules of C[x, y] in terms of a special type of submodules. We say that the submodule M of C[x, y] is an Lmodule of order s if, whenever F (x, y) = ∑N n=0 fn(x) · y n ∈ M is such that f0 = . . . = fs−1 = 0, then F = 0. We show that the proper submodules of C[x, y] are the sums Md+M , where Md = {F ∈ C[x, y] : deg xF < d}, and M is an L-module. We give a construction of L-modules parametrized by sequences of complex numbers. A submodule M ⊂ C[x1, . . . , xn] is decomposable if it is the sum of finitely many proper submodules of M . Otherwise M is indecomposable. It is easy to see that every submodule of C[x1, . . . , xn] is the sum of finitely many indecomposable submodules. In C[x, y] every indecomposable submodule is either an L-module or equals Md for some d. In the other direction we show that Md is indecomposable for every d, and so is every L-module of order 1. Finally, we prove that there exists a submodule of C[x, y] (in fact, an L-module of order 1) which is not relatively closed in C[x, y]. This answers a problem posed by L. Székelyhidi in 2011.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信