Xu Zhang , Bruce Golden , Edward Wasil , Laura Pimentel , Jon Mark Hirshon
{"title":"使用两态马尔可夫模型调查巴尔的摩市急诊部门的级联事件","authors":"Xu Zhang , Bruce Golden , Edward Wasil , Laura Pimentel , Jon Mark Hirshon","doi":"10.1016/j.orhc.2021.100324","DOIUrl":null,"url":null,"abstract":"<div><p>The event of high emergency department (ED) utilization or inaccessibility to the ED may result in hospital after hospital in a city not accepting new patients in need of urgent medical care. We call this a cascading event. In this paper, we investigate cascading events among 11 EDs in Baltimore City in 2018 and 2019 using a two-state Markov model. Additionally, the transition probabilities are used to monitor the evolution of cascading events. Meanwhile, we predict the expected remaining hours in each state. After we calculate and compare the probabilities of having a cascading event for each ED, we finally identify the similarity and heterogeneity among EDs using cluster analysis. The findings of our study reveal that the continuous yellow alerts at Johns Hopkins Hospital, Johns Hopkins Bayview Medical Center (JH Bayview), Sinai Hospital, and the University of Maryland Medical Center (UMMC) are associated with a large chance of having a cascading event in the city that affects all 11 hospitals. Weekdays dramatically increased chances of having a cascading event.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"31 ","pages":"Article 100324"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating cascading events for emergency departments in Baltimore City using a two-state Markov model\",\"authors\":\"Xu Zhang , Bruce Golden , Edward Wasil , Laura Pimentel , Jon Mark Hirshon\",\"doi\":\"10.1016/j.orhc.2021.100324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The event of high emergency department (ED) utilization or inaccessibility to the ED may result in hospital after hospital in a city not accepting new patients in need of urgent medical care. We call this a cascading event. In this paper, we investigate cascading events among 11 EDs in Baltimore City in 2018 and 2019 using a two-state Markov model. Additionally, the transition probabilities are used to monitor the evolution of cascading events. Meanwhile, we predict the expected remaining hours in each state. After we calculate and compare the probabilities of having a cascading event for each ED, we finally identify the similarity and heterogeneity among EDs using cluster analysis. The findings of our study reveal that the continuous yellow alerts at Johns Hopkins Hospital, Johns Hopkins Bayview Medical Center (JH Bayview), Sinai Hospital, and the University of Maryland Medical Center (UMMC) are associated with a large chance of having a cascading event in the city that affects all 11 hospitals. Weekdays dramatically increased chances of having a cascading event.</p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"31 \",\"pages\":\"Article 100324\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692321000400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692321000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Investigating cascading events for emergency departments in Baltimore City using a two-state Markov model
The event of high emergency department (ED) utilization or inaccessibility to the ED may result in hospital after hospital in a city not accepting new patients in need of urgent medical care. We call this a cascading event. In this paper, we investigate cascading events among 11 EDs in Baltimore City in 2018 and 2019 using a two-state Markov model. Additionally, the transition probabilities are used to monitor the evolution of cascading events. Meanwhile, we predict the expected remaining hours in each state. After we calculate and compare the probabilities of having a cascading event for each ED, we finally identify the similarity and heterogeneity among EDs using cluster analysis. The findings of our study reveal that the continuous yellow alerts at Johns Hopkins Hospital, Johns Hopkins Bayview Medical Center (JH Bayview), Sinai Hospital, and the University of Maryland Medical Center (UMMC) are associated with a large chance of having a cascading event in the city that affects all 11 hospitals. Weekdays dramatically increased chances of having a cascading event.