需求侧响应下的电力负荷预测与用户利益最大化研究

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenna Zhao, Guoxing Mu, Yanfang Zhu, Limei Xu, Deliang Zhang, Hongwei Huang
{"title":"需求侧响应下的电力负荷预测与用户利益最大化研究","authors":"Wenna Zhao, Guoxing Mu, Yanfang Zhu, Limei Xu, Deliang Zhang, Hongwei Huang","doi":"10.4018/ijsir.317112","DOIUrl":null,"url":null,"abstract":"In this paper, the real-time changes of demand-side response factors are accurately considered. First, CNN is combined with BiLSTM network to extract the spatio-temporal features of load data; then an attention mechanism is introduced to automatically assign the corresponding weights to the hidden layer states of BiLSTM. In the optimization part of the network parameters, the PSO algorithm is combined to obtain better model parameters. Then, considering the average reduction rate of various users under energy efficiency resources and the average load rate under load resources on the original forecast load and the original forecast load, the original load is superimposed with the response load considering demand-side resources to achieve accurate load forecast. Finally, “price-based” time-of-use tariff and “incentive-based” emergency demand response are selected to build a load response model based on the principle of maximizing customer benefits. The results show that demand-side response can reduce the frequency and magnitude of price fluctuations in the wholesale market.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Electric Load Forecasting and User Benefit Maximization Under Demand-Side Response\",\"authors\":\"Wenna Zhao, Guoxing Mu, Yanfang Zhu, Limei Xu, Deliang Zhang, Hongwei Huang\",\"doi\":\"10.4018/ijsir.317112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the real-time changes of demand-side response factors are accurately considered. First, CNN is combined with BiLSTM network to extract the spatio-temporal features of load data; then an attention mechanism is introduced to automatically assign the corresponding weights to the hidden layer states of BiLSTM. In the optimization part of the network parameters, the PSO algorithm is combined to obtain better model parameters. Then, considering the average reduction rate of various users under energy efficiency resources and the average load rate under load resources on the original forecast load and the original forecast load, the original load is superimposed with the response load considering demand-side resources to achieve accurate load forecast. Finally, “price-based” time-of-use tariff and “incentive-based” emergency demand response are selected to build a load response model based on the principle of maximizing customer benefits. The results show that demand-side response can reduce the frequency and magnitude of price fluctuations in the wholesale market.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsir.317112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.317112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文准确地考虑了需求侧响应因子的实时变化。首先,将CNN与BiLSTM网络相结合,提取负荷数据的时空特征;然后引入注意力机制来自动为BiLSTM的隐藏层状态分配相应的权重。在网络参数的优化部分,将PSO算法相结合,获得更好的模型参数。然后,考虑各用户在能效资源下的平均减少率以及负荷资源下对原始预测负荷和原始预测负荷的平均负荷率,将原始负荷与考虑需求侧资源的响应负荷叠加,实现准确的负荷预测。最后,选择“基于价格的”使用时电价和“基于激励的”应急需求响应,建立了基于客户利益最大化原则的负荷响应模型。结果表明,需求侧反应可以降低批发市场价格波动的频率和幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Electric Load Forecasting and User Benefit Maximization Under Demand-Side Response
In this paper, the real-time changes of demand-side response factors are accurately considered. First, CNN is combined with BiLSTM network to extract the spatio-temporal features of load data; then an attention mechanism is introduced to automatically assign the corresponding weights to the hidden layer states of BiLSTM. In the optimization part of the network parameters, the PSO algorithm is combined to obtain better model parameters. Then, considering the average reduction rate of various users under energy efficiency resources and the average load rate under load resources on the original forecast load and the original forecast load, the original load is superimposed with the response load considering demand-side resources to achieve accurate load forecast. Finally, “price-based” time-of-use tariff and “incentive-based” emergency demand response are selected to build a load response model based on the principle of maximizing customer benefits. The results show that demand-side response can reduce the frequency and magnitude of price fluctuations in the wholesale market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信