{"title":"航空无损检测与评估(aNDT&E)","authors":"Ge-wei Chen, Liujun Li, Zhenhua Shi, Bo Shang","doi":"10.32548/2023.me-04300","DOIUrl":null,"url":null,"abstract":"Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerial Nondestructive Testing and Evaluation (aNDT&E)\",\"authors\":\"Ge-wei Chen, Liujun Li, Zhenhua Shi, Bo Shang\",\"doi\":\"10.32548/2023.me-04300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2023.me-04300\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2023.me-04300","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Aerial Nondestructive Testing and Evaluation (aNDT&E)
Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.