{"title":"受树木形态启发的仿生动态遮阳立面改善居住者的日光性能","authors":"S. M. Hosseini, F. Fadli, M. Mohammadi","doi":"10.15627/JD.2021.5","DOIUrl":null,"url":null,"abstract":"Many recent studies in the field of the kinetic facade developed the grid-based modular forms through primary kinetic movements which are restricted in the simple shapes. However, learning from biological analogies reveals that plants and trees provide adjustable daylighting strategies by means of multilayered and curvature morphological changes. This research builds on a relevant literature study, observation, biomimicry morphological approach (top-down), and parametric daylighting simulation to develop a multilayered biomimetic kinetic facade form, inspired by tree morphology to improve occupants’ daylight performance. The first part of the research uses a literature review to explore how biomimicry influences the kinetic facade’s functions. Then, the study applies the biomimicry morphological approach to extract the formal strategies of tress due to dynamic daylight. Concerning functional convergence, the biomimicry principles are translated to the kinetic facade form configuration and movements. The extracted forms and movements are translated into the design solutions for the kinetic facade resulting in the flexible form by using intersected-multilayered skin and kinetic vectors with curvature movements. The comprehensive annual climate-based metrics and luminance-based metric simulation (625 alternatives) confirm the high performance of the bio-inspired complex kinetic facade for improving occupants’ daylight performance and preventing visual discomfort in comparison with the simple plain window as the base case. The kinetic facade provides daylight performance improvement, especially the best case achieves spatial Daylight Autonomy, Useful Daylight Illuminance, and Exceed Useful Daylight Illuminance of 50.6, 85.5, 7.55 respectively.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"8 1","pages":"65-82"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Biomimetic Kinetic Shading Facade Inspired by Tree Morphology for Improving Occupant’s Daylight Performance\",\"authors\":\"S. M. Hosseini, F. Fadli, M. Mohammadi\",\"doi\":\"10.15627/JD.2021.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent studies in the field of the kinetic facade developed the grid-based modular forms through primary kinetic movements which are restricted in the simple shapes. However, learning from biological analogies reveals that plants and trees provide adjustable daylighting strategies by means of multilayered and curvature morphological changes. This research builds on a relevant literature study, observation, biomimicry morphological approach (top-down), and parametric daylighting simulation to develop a multilayered biomimetic kinetic facade form, inspired by tree morphology to improve occupants’ daylight performance. The first part of the research uses a literature review to explore how biomimicry influences the kinetic facade’s functions. Then, the study applies the biomimicry morphological approach to extract the formal strategies of tress due to dynamic daylight. Concerning functional convergence, the biomimicry principles are translated to the kinetic facade form configuration and movements. The extracted forms and movements are translated into the design solutions for the kinetic facade resulting in the flexible form by using intersected-multilayered skin and kinetic vectors with curvature movements. The comprehensive annual climate-based metrics and luminance-based metric simulation (625 alternatives) confirm the high performance of the bio-inspired complex kinetic facade for improving occupants’ daylight performance and preventing visual discomfort in comparison with the simple plain window as the base case. The kinetic facade provides daylight performance improvement, especially the best case achieves spatial Daylight Autonomy, Useful Daylight Illuminance, and Exceed Useful Daylight Illuminance of 50.6, 85.5, 7.55 respectively.\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\"8 1\",\"pages\":\"65-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/JD.2021.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/JD.2021.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Biomimetic Kinetic Shading Facade Inspired by Tree Morphology for Improving Occupant’s Daylight Performance
Many recent studies in the field of the kinetic facade developed the grid-based modular forms through primary kinetic movements which are restricted in the simple shapes. However, learning from biological analogies reveals that plants and trees provide adjustable daylighting strategies by means of multilayered and curvature morphological changes. This research builds on a relevant literature study, observation, biomimicry morphological approach (top-down), and parametric daylighting simulation to develop a multilayered biomimetic kinetic facade form, inspired by tree morphology to improve occupants’ daylight performance. The first part of the research uses a literature review to explore how biomimicry influences the kinetic facade’s functions. Then, the study applies the biomimicry morphological approach to extract the formal strategies of tress due to dynamic daylight. Concerning functional convergence, the biomimicry principles are translated to the kinetic facade form configuration and movements. The extracted forms and movements are translated into the design solutions for the kinetic facade resulting in the flexible form by using intersected-multilayered skin and kinetic vectors with curvature movements. The comprehensive annual climate-based metrics and luminance-based metric simulation (625 alternatives) confirm the high performance of the bio-inspired complex kinetic facade for improving occupants’ daylight performance and preventing visual discomfort in comparison with the simple plain window as the base case. The kinetic facade provides daylight performance improvement, especially the best case achieves spatial Daylight Autonomy, Useful Daylight Illuminance, and Exceed Useful Daylight Illuminance of 50.6, 85.5, 7.55 respectively.
期刊介绍:
Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal