耦合Zakharov-Kuz涅佐夫系统的光滑性

IF 0.8 4区 数学 Q2 MATHEMATICS
Julie L. Levandosky, O. Vera
{"title":"耦合Zakharov-Kuz涅佐夫系统的光滑性","authors":"Julie L. Levandosky, O. Vera","doi":"10.58997/ejde.2023.11","DOIUrl":null,"url":null,"abstract":"In this article we study the smoothness properties of solutions to a two-dimensional coupled Zakharov-Kuznetsov system. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0,v0) possesses certain regularity and sufficient decay as x → ∞, then the solution (u(t),v(t)) will be smoother than (u0, v0) for 0 < t ≤ T where T is the existence time of the solution.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing properties for a coupled Zakharov-Kuznetsov system\",\"authors\":\"Julie L. Levandosky, O. Vera\",\"doi\":\"10.58997/ejde.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the smoothness properties of solutions to a two-dimensional coupled Zakharov-Kuznetsov system. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0,v0) possesses certain regularity and sufficient decay as x → ∞, then the solution (u(t),v(t)) will be smoother than (u0, v0) for 0 < t ≤ T where T is the existence time of the solution.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维耦合Zakharov-Kuz涅佐夫系统解的光滑性。我们证明了方程的色散性质导致了解的正则性增益。特别地,如果初始数据(u0,v0)具有一定的规律性和足够的衰变为x→ ∞, 则对于0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Smoothing properties for a coupled Zakharov-Kuznetsov system
In this article we study the smoothness properties of solutions to a two-dimensional coupled Zakharov-Kuznetsov system. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0,v0) possesses certain regularity and sufficient decay as x → ∞, then the solution (u(t),v(t)) will be smoother than (u0, v0) for 0 < t ≤ T where T is the existence time of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信