关于对数伽玛生成的阿基米德Copulas族

IF 1.4 Q3 BUSINESS, FINANCE
Yaming Yang, Shuanming Li
{"title":"关于对数伽玛生成的阿基米德Copulas族","authors":"Yaming Yang, Shuanming Li","doi":"10.1080/10920277.2020.1856687","DOIUrl":null,"url":null,"abstract":"Modeling dependence structure among various risks, especially the measure of tail dependence and the aggregation of risks, is crucial for risk management. In this article, we present an extension to the traditional one-parameter Archimedean copulas by integrating the log-gamma-generated (LGG) margins. This class of novel multivariate distribution can better capture the tail dependence. The distortion effect on the classic one-parameter Archimedean copulas is well exhibited and the analytical expression of the sum of bivariate margins is proposed. The model provides a flexible way to capture tail risks and aggregate portfolio losses. Sufficient conditions for constructing a legitimate d-dimensional LGG Archimedean copula as well as the simulation framework are also proposed. Furthermore, two applications of this model are presented using concrete insurance datasets.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"26 1","pages":"123 - 142"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10920277.2020.1856687","citationCount":"2","resultStr":"{\"title\":\"On a Family of Log-Gamma-Generated Archimedean Copulas\",\"authors\":\"Yaming Yang, Shuanming Li\",\"doi\":\"10.1080/10920277.2020.1856687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling dependence structure among various risks, especially the measure of tail dependence and the aggregation of risks, is crucial for risk management. In this article, we present an extension to the traditional one-parameter Archimedean copulas by integrating the log-gamma-generated (LGG) margins. This class of novel multivariate distribution can better capture the tail dependence. The distortion effect on the classic one-parameter Archimedean copulas is well exhibited and the analytical expression of the sum of bivariate margins is proposed. The model provides a flexible way to capture tail risks and aggregate portfolio losses. Sufficient conditions for constructing a legitimate d-dimensional LGG Archimedean copula as well as the simulation framework are also proposed. Furthermore, two applications of this model are presented using concrete insurance datasets.\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\"26 1\",\"pages\":\"123 - 142\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10920277.2020.1856687\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2020.1856687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2020.1856687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

建模各种风险之间的依赖结构,特别是尾部依赖性和风险聚集性的度量,对于风险管理至关重要。在本文中,我们通过积分对数伽玛生成(LGG)裕度,对传统的单参数阿基米德Copula进行了扩展。这类新的多元分布可以更好地捕捉尾部依赖性。充分展示了经典单参数阿基米德Copula的畸变效应,并给出了二元边值和的解析表达式。该模型提供了一种灵活的方法来捕捉尾部风险和组合总损失。给出了构造合法的d维LGG阿基米德copula的充分条件和仿真框架。此外,使用具体的保险数据集介绍了该模型的两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Family of Log-Gamma-Generated Archimedean Copulas
Modeling dependence structure among various risks, especially the measure of tail dependence and the aggregation of risks, is crucial for risk management. In this article, we present an extension to the traditional one-parameter Archimedean copulas by integrating the log-gamma-generated (LGG) margins. This class of novel multivariate distribution can better capture the tail dependence. The distortion effect on the classic one-parameter Archimedean copulas is well exhibited and the analytical expression of the sum of bivariate margins is proposed. The model provides a flexible way to capture tail risks and aggregate portfolio losses. Sufficient conditions for constructing a legitimate d-dimensional LGG Archimedean copula as well as the simulation framework are also proposed. Furthermore, two applications of this model are presented using concrete insurance datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信