FOWT半潜器在双色波和随机波作用下CFD模拟的验证

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yu Wang, Hamn-Ching Chen
{"title":"FOWT半潜器在双色波和随机波作用下CFD模拟的验证","authors":"Yu Wang, Hamn-Ching Chen","doi":"10.1115/1.4056421","DOIUrl":null,"url":null,"abstract":"\n In the present work an extensive verification and validation study is performed to evaluate the accuracy and credibility for CFD simulations of the hydrodynamic responses of a semi-submersible Floating Offshore Wind Turbine (FOWT) platform under bichromatic waves and random waves. A dynamic mooring model is coupled with the CFD code to accurately simulate the mooring system. For the bichromatic wave case, the surge, heave and pitch RAOs at wave frequencies, mean surge offset and mean surge force of the semi-submersible platform are investigated. The numerical uncertainties of the above metrics are quantified, which are primarily sourced from the discretization uncertainty. For the random wave case, the surge, heave and pitch PSD sums in wave frequency range and low frequency range are validated against the experimental results. The numerical uncertainty derived from the bichromatic wave case is applied in the validation of the random wave case. The PSD sums in wave frequency range have achieved the validation within the validation uncertainty. Though the PSD sums in low frequency range are under-predicted, the results with the utilization of the CFD code agree more with the experimental value than the mid-fidelity tools.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Verification and Validation of CFD Simulations of a FOWT Semi-submersible under Bichromatic and Random Waves\",\"authors\":\"Yu Wang, Hamn-Ching Chen\",\"doi\":\"10.1115/1.4056421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present work an extensive verification and validation study is performed to evaluate the accuracy and credibility for CFD simulations of the hydrodynamic responses of a semi-submersible Floating Offshore Wind Turbine (FOWT) platform under bichromatic waves and random waves. A dynamic mooring model is coupled with the CFD code to accurately simulate the mooring system. For the bichromatic wave case, the surge, heave and pitch RAOs at wave frequencies, mean surge offset and mean surge force of the semi-submersible platform are investigated. The numerical uncertainties of the above metrics are quantified, which are primarily sourced from the discretization uncertainty. For the random wave case, the surge, heave and pitch PSD sums in wave frequency range and low frequency range are validated against the experimental results. The numerical uncertainty derived from the bichromatic wave case is applied in the validation of the random wave case. The PSD sums in wave frequency range have achieved the validation within the validation uncertainty. Though the PSD sums in low frequency range are under-predicted, the results with the utilization of the CFD code agree more with the experimental value than the mid-fidelity tools.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056421\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056421","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

在本工作中,进行了广泛的验证和验证研究,以评估半潜式浮动海上风力涡轮机(FOWT)平台在双色波和随机波下的流体动力学响应CFD模拟的准确性和可信度。将动态系泊模型与CFD代码相结合,以精确模拟系泊系统。对于双色波情况,研究了半潜式平台在波浪频率、平均涌浪偏移和平均涌浪力下的涌浪、升沉和纵摇RAO。对上述度量的数值不确定性进行了量化,这些不确定性主要来源于离散化不确定性。对于随机波浪情况,根据实验结果验证了波浪频率范围和低频范围内的浪涌、升沉和纵摇PSD总和。从双色波情况导出的数值不确定性应用于随机波情况的验证。波频率范围内的PSD总和在验证不确定度范围内实现了验证。尽管低频范围内的PSD总和预测不足,但与高保真度工具相比,CFD代码的使用结果更符合实验值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification and Validation of CFD Simulations of a FOWT Semi-submersible under Bichromatic and Random Waves
In the present work an extensive verification and validation study is performed to evaluate the accuracy and credibility for CFD simulations of the hydrodynamic responses of a semi-submersible Floating Offshore Wind Turbine (FOWT) platform under bichromatic waves and random waves. A dynamic mooring model is coupled with the CFD code to accurately simulate the mooring system. For the bichromatic wave case, the surge, heave and pitch RAOs at wave frequencies, mean surge offset and mean surge force of the semi-submersible platform are investigated. The numerical uncertainties of the above metrics are quantified, which are primarily sourced from the discretization uncertainty. For the random wave case, the surge, heave and pitch PSD sums in wave frequency range and low frequency range are validated against the experimental results. The numerical uncertainty derived from the bichromatic wave case is applied in the validation of the random wave case. The PSD sums in wave frequency range have achieved the validation within the validation uncertainty. Though the PSD sums in low frequency range are under-predicted, the results with the utilization of the CFD code agree more with the experimental value than the mid-fidelity tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信