加密货币的二阶层次聚类

IF 0.8 Q4 MANAGEMENT
H. Sadeqi
{"title":"加密货币的二阶层次聚类","authors":"H. Sadeqi","doi":"10.22059/IJMS.2021.320018.674466","DOIUrl":null,"url":null,"abstract":"The clustering of cryptocurrencies - as an emerging field in investment management - is the main topic of this research. Applying the information-based distance matrices, we clustered the 30 most valuable cryptocurrencies. Then, we identified the most influential clustering by the concept of Minimum Spanning Tree (MST) and the centrality measures of graph theory. A second-order clustering, which is defined as the clustering of hierarchical clusterings, is applied to cluster 56 dendrograms. Using the most influential clustering, we identified the main clusters of cryptocurrencies and sub-clusters. The results show that the clustering composition of cryptocurrencies changed at the period I (before COVID-19) and II (pandemic time).","PeriodicalId":51913,"journal":{"name":"Iranian Journal of Management Studies","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Second-order Hierarchical Clustering of Cryptocurrencies\",\"authors\":\"H. Sadeqi\",\"doi\":\"10.22059/IJMS.2021.320018.674466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The clustering of cryptocurrencies - as an emerging field in investment management - is the main topic of this research. Applying the information-based distance matrices, we clustered the 30 most valuable cryptocurrencies. Then, we identified the most influential clustering by the concept of Minimum Spanning Tree (MST) and the centrality measures of graph theory. A second-order clustering, which is defined as the clustering of hierarchical clusterings, is applied to cluster 56 dendrograms. Using the most influential clustering, we identified the main clusters of cryptocurrencies and sub-clusters. The results show that the clustering composition of cryptocurrencies changed at the period I (before COVID-19) and II (pandemic time).\",\"PeriodicalId\":51913,\"journal\":{\"name\":\"Iranian Journal of Management Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Management Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/IJMS.2021.320018.674466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Management Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJMS.2021.320018.674466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

加密货币集群作为投资管理中的一个新兴领域,是本研究的主要主题。应用基于信息的距离矩阵,我们对30种最有价值的加密货币进行了聚类。然后,我们利用最小生成树(MST)的概念和图论的中心性度量来确定最具影响力的聚类。将二阶聚类(定义为分层聚类的聚类)应用于聚类56树状图。使用最具影响力的聚类,我们确定了加密货币的主要聚类和子聚类。结果表明,加密货币的聚类组成在第一阶段(新冠肺炎之前)和第二阶段(大流行时间)发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Second-order Hierarchical Clustering of Cryptocurrencies
The clustering of cryptocurrencies - as an emerging field in investment management - is the main topic of this research. Applying the information-based distance matrices, we clustered the 30 most valuable cryptocurrencies. Then, we identified the most influential clustering by the concept of Minimum Spanning Tree (MST) and the centrality measures of graph theory. A second-order clustering, which is defined as the clustering of hierarchical clusterings, is applied to cluster 56 dendrograms. Using the most influential clustering, we identified the main clusters of cryptocurrencies and sub-clusters. The results show that the clustering composition of cryptocurrencies changed at the period I (before COVID-19) and II (pandemic time).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信