基于可编程逻辑控制器的小型物料配送操作原型控制系统的开发

Arief Goeritno, S. Pratama
{"title":"基于可编程逻辑控制器的小型物料配送操作原型控制系统的开发","authors":"Arief Goeritno, S. Pratama","doi":"10.17529/jre.v16i3.14905","DOIUrl":null,"url":null,"abstract":"A miniature sorting of material quality has been made, aided by a prototype of the controller system based on the Mitsubishi FX1N-24MR Programmable Logic Controller (PLC). A number of stages include the manufacture of the conveyor system unit, the electrical system, PLC programming, and performance measurement. The conveyor unit assembling was processed by installing the conveyor belt, dc motor, pneumatic cylinder, solenoid valve, and sensors. The electrical system is an integration of the Mitsubishi FX1N-24MR PLC, switched-mode power supply, miniature circuit breaker (MCB), dc voltage regulator circuit, relays, digital counters, pushbuttons, and selector switches arranged in a 20 x 30 x 15 cm panel box. Mitsubishi PLC system programming is based on algorithmic determination and ladder diagram arrangement assisted by GX Developer (GX Work). Performance measurement in the form of pulse readings is carried out by setting and manufacturing ladder counters and shift registers to count the number of pulses for each material and the accuracy of sorting when the material is detected simultaneously. The system performance is indicated by pulse reading accuracy and sorting timing accuracy. The reading of the pulse from the proximity switch affects the counter calculation to activate the pneumatic cylinder unit in sorting. Sorting for material-A takes 11 pulses, while for material-B, it takes 19 pulses. The synchronization measurement functions when an error occurs in the system in order to maintain the input received is the same as the output in the PLC-based control system. ","PeriodicalId":30766,"journal":{"name":"Jurnal Rekayasa Elektrika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rancang-Bangun Prototipe Sistem Kontrol Berbasis Programmable Logic Controller untuk Pengoperasian Miniatur Penyortiran Material\",\"authors\":\"Arief Goeritno, S. Pratama\",\"doi\":\"10.17529/jre.v16i3.14905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A miniature sorting of material quality has been made, aided by a prototype of the controller system based on the Mitsubishi FX1N-24MR Programmable Logic Controller (PLC). A number of stages include the manufacture of the conveyor system unit, the electrical system, PLC programming, and performance measurement. The conveyor unit assembling was processed by installing the conveyor belt, dc motor, pneumatic cylinder, solenoid valve, and sensors. The electrical system is an integration of the Mitsubishi FX1N-24MR PLC, switched-mode power supply, miniature circuit breaker (MCB), dc voltage regulator circuit, relays, digital counters, pushbuttons, and selector switches arranged in a 20 x 30 x 15 cm panel box. Mitsubishi PLC system programming is based on algorithmic determination and ladder diagram arrangement assisted by GX Developer (GX Work). Performance measurement in the form of pulse readings is carried out by setting and manufacturing ladder counters and shift registers to count the number of pulses for each material and the accuracy of sorting when the material is detected simultaneously. The system performance is indicated by pulse reading accuracy and sorting timing accuracy. The reading of the pulse from the proximity switch affects the counter calculation to activate the pneumatic cylinder unit in sorting. Sorting for material-A takes 11 pulses, while for material-B, it takes 19 pulses. The synchronization measurement functions when an error occurs in the system in order to maintain the input received is the same as the output in the PLC-based control system. \",\"PeriodicalId\":30766,\"journal\":{\"name\":\"Jurnal Rekayasa Elektrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Rekayasa Elektrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17529/jre.v16i3.14905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Elektrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17529/jre.v16i3.14905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在三菱FX1N-24MR可编程逻辑控制器(PLC)的控制系统原型的帮助下,对材料质量进行了小型分选。多个阶段包括输送机系统单元的制造、电气系统、PLC编程和性能测量。通过安装输送带、直流电机、气缸、电磁阀和传感器来进行输送装置的组装。电气系统集成了三菱FX1N-24MR PLC、开关电源、微型断路器(MCB)、直流电压调节器电路、继电器、数字计数器、按钮和选择器开关,这些开关布置在一个20 x 30 x 15 cm的配电箱内。三菱PLC系统编程基于GX Developer(GX Work)协助的算法确定和梯形图排列。脉冲读数形式的性能测量是通过设置和制造梯形计数器和移位寄存器来进行的,以计算每种材料的脉冲数量以及同时检测到材料时的分拣精度。系统性能由脉冲读取精度和分选定时精度来表示。接近开关的脉冲读数会影响计数器计算,从而激活分拣中的气缸单元。材料A的分选需要11个脉冲,而材料B的分选需要19个脉冲。当系统中发生错误时,为了保持接收到的输入与基于PLC的控制系统中的输出相同,同步测量功能发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rancang-Bangun Prototipe Sistem Kontrol Berbasis Programmable Logic Controller untuk Pengoperasian Miniatur Penyortiran Material
A miniature sorting of material quality has been made, aided by a prototype of the controller system based on the Mitsubishi FX1N-24MR Programmable Logic Controller (PLC). A number of stages include the manufacture of the conveyor system unit, the electrical system, PLC programming, and performance measurement. The conveyor unit assembling was processed by installing the conveyor belt, dc motor, pneumatic cylinder, solenoid valve, and sensors. The electrical system is an integration of the Mitsubishi FX1N-24MR PLC, switched-mode power supply, miniature circuit breaker (MCB), dc voltage regulator circuit, relays, digital counters, pushbuttons, and selector switches arranged in a 20 x 30 x 15 cm panel box. Mitsubishi PLC system programming is based on algorithmic determination and ladder diagram arrangement assisted by GX Developer (GX Work). Performance measurement in the form of pulse readings is carried out by setting and manufacturing ladder counters and shift registers to count the number of pulses for each material and the accuracy of sorting when the material is detected simultaneously. The system performance is indicated by pulse reading accuracy and sorting timing accuracy. The reading of the pulse from the proximity switch affects the counter calculation to activate the pneumatic cylinder unit in sorting. Sorting for material-A takes 11 pulses, while for material-B, it takes 19 pulses. The synchronization measurement functions when an error occurs in the system in order to maintain the input received is the same as the output in the PLC-based control system. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信