使用分数析因设计进行多重治疗的因果推断

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Nicole E. Pashley, Marie-Abèle C. Bind
{"title":"使用分数析因设计进行多重治疗的因果推断","authors":"Nicole E. Pashley,&nbsp;Marie-Abèle C. Bind","doi":"10.1002/cjs.11734","DOIUrl":null,"url":null,"abstract":"<p>We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003–2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Causal inference for multiple treatments using fractional factorial designs\",\"authors\":\"Nicole E. Pashley,&nbsp;Marie-Abèle C. Bind\",\"doi\":\"10.1002/cjs.11734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003–2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11734\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑在潜在结果框架内使用分数因子和不完全设计设计和分析多因素实验。当有限的资源使运行全因子设计变得不可行时,这些设计特别有用。我们将基于设计的方法与标准回归方法联系起来。我们进一步激发了这些设计在多因素观察性研究中的有用性,在这些研究中,某些治疗组合可能非常罕见,以至于在相应的观察数据中没有测量结果。因此,将假设的部分析因实验概念化,而不是全析因实验,可以在这些环境中进行适当的分析。我们使用2003-2004年国家健康和营养检查调查周期的生物医学数据来说明我们的方法,以检查四种常见杀虫剂对体重指数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal inference for multiple treatments using fractional factorial designs

We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003–2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信