Pinjie Xie, Baolin Sun, Li Liu, Yuwen Xie, Fan Yang, Rong Zhang
{"title":"碳达峰和碳中和背景下的中国电力行业碳排放强度:测度与区域差异","authors":"Pinjie Xie, Baolin Sun, Li Liu, Yuwen Xie, Fan Yang, Rong Zhang","doi":"10.1108/ijccsm-08-2022-0119","DOIUrl":null,"url":null,"abstract":"\nPurpose\nTo cope with the severe situation of the global climate, China proposed the “30 60” dual-carbon strategic goal. Based on this background, the purpose of this paper is to investigate scientifically and reasonably the interprovincial pattern of China’s power carbon emission intensity and further explore the causes of differences on this basis.\n\n\nDesign/methodology/approach\nConsidering the principle of “shared but differentiated responsibilities,” this study measures the carbon emissions within the power industry from 1997 to 2019 scientifically, via the panel data of 30 provinces in China. The power carbon emission intensity is chosen as the indicator. Using the Dagum Gini coefficient to explore regional differences and their causes.\n\n\nFindings\nThe results of this paper show that, first, China’s carbon emission intensity from the power industry overall is significantly different. From the perspective of geospatial distribution, the three regions have unbalanced characteristics. Second, according to the decomposition results of the Gini coefficient, the overall difference in power carbon emission intensity is generally expanding. The geospatial and economic development levels are examined separately. The gaps between the eastern and economically developed regions are the smallest, and the regional differences are the source of the overall disparity.\n\n\nResearch limitations/implications\nFurther exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies. This study provides direction for analyzing the green and low carbon development of China’s power industry.\n\n\nPractical implications\nAs an economic indicator of green and low-carbon development, CO2 intensity of power industry can directly reflect the dependence of economic growth on the high emission of electricity and energy. and further exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.\n\n\nSocial implications\nFor a long time, with the rapid economic development, resulting in the unresolved contradiction between low energy efficiency and high carbon emissions. To this end, scientifically and reasonably investigating the interprovincial pattern of China’s power carbon emission intensity, and further exploring the causes of differences on this basis, is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.\n\n\nOriginality/value\nThird, considering the influence of spatial factors on the convergence of power carbon emission intensity, a variety of different spatial weight matrices are selected. Based on the β-convergence theory from both absolute and conditional perspectives, we dig deeper into the spatial convergence of electricity carbon emission intensity across the country and the three regions.\n","PeriodicalId":46689,"journal":{"name":"International Journal of Climate Change Strategies and Management","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"China’s power industry’s carbon emission intensity in the context of carbon peaking and carbon neutrality: measurement and regional difference\",\"authors\":\"Pinjie Xie, Baolin Sun, Li Liu, Yuwen Xie, Fan Yang, Rong Zhang\",\"doi\":\"10.1108/ijccsm-08-2022-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nTo cope with the severe situation of the global climate, China proposed the “30 60” dual-carbon strategic goal. Based on this background, the purpose of this paper is to investigate scientifically and reasonably the interprovincial pattern of China’s power carbon emission intensity and further explore the causes of differences on this basis.\\n\\n\\nDesign/methodology/approach\\nConsidering the principle of “shared but differentiated responsibilities,” this study measures the carbon emissions within the power industry from 1997 to 2019 scientifically, via the panel data of 30 provinces in China. The power carbon emission intensity is chosen as the indicator. Using the Dagum Gini coefficient to explore regional differences and their causes.\\n\\n\\nFindings\\nThe results of this paper show that, first, China’s carbon emission intensity from the power industry overall is significantly different. From the perspective of geospatial distribution, the three regions have unbalanced characteristics. Second, according to the decomposition results of the Gini coefficient, the overall difference in power carbon emission intensity is generally expanding. The geospatial and economic development levels are examined separately. The gaps between the eastern and economically developed regions are the smallest, and the regional differences are the source of the overall disparity.\\n\\n\\nResearch limitations/implications\\nFurther exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies. This study provides direction for analyzing the green and low carbon development of China’s power industry.\\n\\n\\nPractical implications\\nAs an economic indicator of green and low-carbon development, CO2 intensity of power industry can directly reflect the dependence of economic growth on the high emission of electricity and energy. and further exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.\\n\\n\\nSocial implications\\nFor a long time, with the rapid economic development, resulting in the unresolved contradiction between low energy efficiency and high carbon emissions. To this end, scientifically and reasonably investigating the interprovincial pattern of China’s power carbon emission intensity, and further exploring the causes of differences on this basis, is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.\\n\\n\\nOriginality/value\\nThird, considering the influence of spatial factors on the convergence of power carbon emission intensity, a variety of different spatial weight matrices are selected. Based on the β-convergence theory from both absolute and conditional perspectives, we dig deeper into the spatial convergence of electricity carbon emission intensity across the country and the three regions.\\n\",\"PeriodicalId\":46689,\"journal\":{\"name\":\"International Journal of Climate Change Strategies and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climate Change Strategies and Management\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1108/ijccsm-08-2022-0119\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climate Change Strategies and Management","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1108/ijccsm-08-2022-0119","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
China’s power industry’s carbon emission intensity in the context of carbon peaking and carbon neutrality: measurement and regional difference
Purpose
To cope with the severe situation of the global climate, China proposed the “30 60” dual-carbon strategic goal. Based on this background, the purpose of this paper is to investigate scientifically and reasonably the interprovincial pattern of China’s power carbon emission intensity and further explore the causes of differences on this basis.
Design/methodology/approach
Considering the principle of “shared but differentiated responsibilities,” this study measures the carbon emissions within the power industry from 1997 to 2019 scientifically, via the panel data of 30 provinces in China. The power carbon emission intensity is chosen as the indicator. Using the Dagum Gini coefficient to explore regional differences and their causes.
Findings
The results of this paper show that, first, China’s carbon emission intensity from the power industry overall is significantly different. From the perspective of geospatial distribution, the three regions have unbalanced characteristics. Second, according to the decomposition results of the Gini coefficient, the overall difference in power carbon emission intensity is generally expanding. The geospatial and economic development levels are examined separately. The gaps between the eastern and economically developed regions are the smallest, and the regional differences are the source of the overall disparity.
Research limitations/implications
Further exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies. This study provides direction for analyzing the green and low carbon development of China’s power industry.
Practical implications
As an economic indicator of green and low-carbon development, CO2 intensity of power industry can directly reflect the dependence of economic growth on the high emission of electricity and energy. and further exploring the causes of differences on this basis is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.
Social implications
For a long time, with the rapid economic development, resulting in the unresolved contradiction between low energy efficiency and high carbon emissions. To this end, scientifically and reasonably investigating the interprovincial pattern of China’s power carbon emission intensity, and further exploring the causes of differences on this basis, is crucial for relevant departments to formulate differentiated energy conservation and emission reduction policies.
Originality/value
Third, considering the influence of spatial factors on the convergence of power carbon emission intensity, a variety of different spatial weight matrices are selected. Based on the β-convergence theory from both absolute and conditional perspectives, we dig deeper into the spatial convergence of electricity carbon emission intensity across the country and the three regions.
期刊介绍:
Effective from volume 10 (2018), International Journal of Climate Change Strategies and Management is an open access journal. In the history of science there have been only a few issues which have mobilized the attention of scientists and policy-makers alike as the issue of climate change currently does. International Journal of Climate Change Strategies and Management is an international forum that addresses the need for disseminating scholarly research, projects and other initiatives aimed to facilitate a better understanding of the subject matter of climate change. The journal publishes papers dealing with policy-making on climate change, and methodological approaches to cope with the problems deriving from climate change. It disseminates experiences from projects and case studies where due consideration to environmental, economic, social and political aspects is given and especially the links and leverages that can be attained by this holistic approach. It regards climate change under the perspective of its wider implications: for economic growth, water and food security, and for people''s survival – especially those living in the poorest communities in developing countries.