Horadam数平方的递归关系及其相关结果

Q4 Mathematics
K. Adegoke, R. Frontczak, T. Goy
{"title":"Horadam数平方的递归关系及其相关结果","authors":"K. Adegoke, R. Frontczak, T. Goy","doi":"10.2478/tmmp-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract We derive recurrence relations for the squares of the Horadam numbers wn2 w_n^2 , where the Horadam sequence wn is such that the numbers wn, for n ∈ ℤ, are defined recursively by w0 = a, w1 = b, wn = pwn−1 − qwn−2 (n ≥ 2), where a, b, p and q are arbitrary complex numbers with p ≠ 0 and q ≠ 0. Some related results emanating from the recurrence relations such as reciprocal sums, partial sums, and sums with double binomial coefficients are also presented.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"82 1","pages":"17 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrence Relations for the Squares of the Horadam Numbers and Some Associated Consequences\",\"authors\":\"K. Adegoke, R. Frontczak, T. Goy\",\"doi\":\"10.2478/tmmp-2022-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We derive recurrence relations for the squares of the Horadam numbers wn2 w_n^2 , where the Horadam sequence wn is such that the numbers wn, for n ∈ ℤ, are defined recursively by w0 = a, w1 = b, wn = pwn−1 − qwn−2 (n ≥ 2), where a, b, p and q are arbitrary complex numbers with p ≠ 0 and q ≠ 0. Some related results emanating from the recurrence relations such as reciprocal sums, partial sums, and sums with double binomial coefficients are also presented.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"82 1\",\"pages\":\"17 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2022-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们导出了Horadam数wn2 w_n^2平方的递推关系,其中Horadam序列wn使得对于n∈ℤ, 由w0=a,w1=b,wn=pwn−1−qwn−2(n≥2)递归定义,其中a,b,p和q是p≠0和q≠0的任意复数。还给出了递推关系的一些相关结果,如倒数和、偏和和具有双二项式系数的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrence Relations for the Squares of the Horadam Numbers and Some Associated Consequences
Abstract We derive recurrence relations for the squares of the Horadam numbers wn2 w_n^2 , where the Horadam sequence wn is such that the numbers wn, for n ∈ ℤ, are defined recursively by w0 = a, w1 = b, wn = pwn−1 − qwn−2 (n ≥ 2), where a, b, p and q are arbitrary complex numbers with p ≠ 0 and q ≠ 0. Some related results emanating from the recurrence relations such as reciprocal sums, partial sums, and sums with double binomial coefficients are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信