{"title":"图边稳定性的一个Gallai定理型结果","authors":"A. Kemnitz, M. Marangio","doi":"10.47443/dml.2023.088","DOIUrl":null,"url":null,"abstract":"For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Gallai’s Theorem type result for the edge stability of graphs\",\"authors\":\"A. Kemnitz, M. Marangio\",\"doi\":\"10.47443/dml.2023.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Gallai’s Theorem type result for the edge stability of graphs
For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )