图边稳定性的一个Gallai定理型结果

IF 1 Q1 MATHEMATICS
A. Kemnitz, M. Marangio
{"title":"图边稳定性的一个Gallai定理型结果","authors":"A. Kemnitz, M. Marangio","doi":"10.47443/dml.2023.088","DOIUrl":null,"url":null,"abstract":"For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Gallai’s Theorem type result for the edge stability of graphs\",\"authors\":\"A. Kemnitz, M. Marangio\",\"doi\":\"10.47443/dml.2023.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于图G的任意不变量ρ(G),G的ρ-边稳定数esρ(G。如果不存在这样的边集,则esρ(G)=∞。Gallai定理指出,对于没有孤立顶点的图G,α(cid:48)(G)+β。我们证明了基于边稳定数esρ(G)的不变量的一个相应结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gallai’s Theorem type result for the edge stability of graphs
For an arbitrary invariant ρ ( G ) of a graph G the ρ -edge stability number es ρ ( G ) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ ( H ) (cid:54) = ρ ( G ) . If such an edge set does not exist, then es ρ ( G ) = ∞ . Gallai’s Theorem states that α (cid:48) ( G ) + β (cid:48) ( G ) = n ( G ) for a graph G without isolated vertices, where α (cid:48) ( G ) is the matching number, β (cid:48) ( G ) the edge covering number, and n ( G ) the order of G . We prove a corresponding result for invariants that are based on the edge stability number es ρ ( G )
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信