特殊的树编号

Pub Date : 2022-03-08 DOI:10.4064/fm180-1-2023
Corey Bacal Switzer
{"title":"特殊的树编号","authors":"Corey Bacal Switzer","doi":"10.4064/fm180-1-2023","DOIUrl":null,"url":null,"abstract":"Define the special tree number, denoted $\\mathfrak{st}$, to be the least size of a tree of height $\\omega_1$ which is neither special nor has a cofinal branch. This cardinal had previously been studied in the context of fragments of $\\mathsf{MA}$ but in this paper we look at its relation to other, more typical, cardinal characteristics. Classical facts imply that $\\aleph_1 \\leq \\mathfrak{st} \\leq 2^{\\aleph_0}$, under Martin's Axiom $\\mathfrak{st} = 2^{\\aleph_0}$ and that $\\mathfrak{st} = \\aleph_1$ is consistent with $\\mathsf{MA}({\\rm Knaster}) + 2^{\\aleph_0} = \\kappa$ for any regular $\\kappa$ thus the value of $\\mathfrak{st}$ is not decided by $\\mathsf{ZFC}$ and in fact can be strictly below essentially all well studied cardinal characteristics. We show that conversely it is consistent that $\\mathfrak{st} = 2^{\\aleph_0} = \\kappa$ for any $\\kappa$ of uncountable cofinality while ${\\rm non}(\\mathcal M) = \\mathfrak{a} = \\mathfrak{s} = \\mathfrak{g} = \\aleph_1$. In particular $\\mathfrak{st}$ is independent of the lefthand side of Cicho\\'{n}'s diagram, amongst other things. The proof involves an in depth study of the standard ccc forcing notion to specialize (wide) Aronszajn trees, which may be of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The special tree number\",\"authors\":\"Corey Bacal Switzer\",\"doi\":\"10.4064/fm180-1-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Define the special tree number, denoted $\\\\mathfrak{st}$, to be the least size of a tree of height $\\\\omega_1$ which is neither special nor has a cofinal branch. This cardinal had previously been studied in the context of fragments of $\\\\mathsf{MA}$ but in this paper we look at its relation to other, more typical, cardinal characteristics. Classical facts imply that $\\\\aleph_1 \\\\leq \\\\mathfrak{st} \\\\leq 2^{\\\\aleph_0}$, under Martin's Axiom $\\\\mathfrak{st} = 2^{\\\\aleph_0}$ and that $\\\\mathfrak{st} = \\\\aleph_1$ is consistent with $\\\\mathsf{MA}({\\\\rm Knaster}) + 2^{\\\\aleph_0} = \\\\kappa$ for any regular $\\\\kappa$ thus the value of $\\\\mathfrak{st}$ is not decided by $\\\\mathsf{ZFC}$ and in fact can be strictly below essentially all well studied cardinal characteristics. We show that conversely it is consistent that $\\\\mathfrak{st} = 2^{\\\\aleph_0} = \\\\kappa$ for any $\\\\kappa$ of uncountable cofinality while ${\\\\rm non}(\\\\mathcal M) = \\\\mathfrak{a} = \\\\mathfrak{s} = \\\\mathfrak{g} = \\\\aleph_1$. In particular $\\\\mathfrak{st}$ is independent of the lefthand side of Cicho\\\\'{n}'s diagram, amongst other things. The proof involves an in depth study of the standard ccc forcing notion to specialize (wide) Aronszajn trees, which may be of independent interest.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm180-1-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm180-1-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

定义特殊树号,表示为$\mathfrak{st}$,是高度为$\omega_1$的树的最小大小,该树既不特殊也没有共尾分支。这个基数以前曾在$\mathsf{MA}$的片段的背景下进行过研究,但在本文中,我们研究了它与其他更典型的基数特征的关系。经典事实表明$\aleph_1\leq\mathfrak{st}\leq2^{\aleph_0}$,在Martin公理$\mathfrak{st}=2^{\aleph_0}$下,并且对于任何正则$\akappa$。相反,我们证明了对于任何不可数余数的$\kappa$,$\mathfrak{st}=2^{\aleph_0}=\akappa$是一致的,而${\rm-non}(\mathcalM)=\mathfrak{a}=\mathfrak{s}=\ mathfrak{g}=\aleph_1$。特别地,$\mathfrak{st}$独立于Cicho图的左手边。该证明涉及对标准ccc强制概念的深入研究,以专门化(宽)Aronszajn树,这可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The special tree number
Define the special tree number, denoted $\mathfrak{st}$, to be the least size of a tree of height $\omega_1$ which is neither special nor has a cofinal branch. This cardinal had previously been studied in the context of fragments of $\mathsf{MA}$ but in this paper we look at its relation to other, more typical, cardinal characteristics. Classical facts imply that $\aleph_1 \leq \mathfrak{st} \leq 2^{\aleph_0}$, under Martin's Axiom $\mathfrak{st} = 2^{\aleph_0}$ and that $\mathfrak{st} = \aleph_1$ is consistent with $\mathsf{MA}({\rm Knaster}) + 2^{\aleph_0} = \kappa$ for any regular $\kappa$ thus the value of $\mathfrak{st}$ is not decided by $\mathsf{ZFC}$ and in fact can be strictly below essentially all well studied cardinal characteristics. We show that conversely it is consistent that $\mathfrak{st} = 2^{\aleph_0} = \kappa$ for any $\kappa$ of uncountable cofinality while ${\rm non}(\mathcal M) = \mathfrak{a} = \mathfrak{s} = \mathfrak{g} = \aleph_1$. In particular $\mathfrak{st}$ is independent of the lefthand side of Cicho\'{n}'s diagram, amongst other things. The proof involves an in depth study of the standard ccc forcing notion to specialize (wide) Aronszajn trees, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信