{"title":"与交换环相关的几类完全强湮灭理想图","authors":"Jalali Mitra, Tehranian Abolfazl, Nikandish Reza, Rasouli Hamid","doi":"10.14712/1213-7243.2020.005","DOIUrl":null,"url":null,"abstract":". Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG( R ) with the vertex set A ( R ) ∗ = A ( R ) \\ { 0 } and two distinct vertices I and J are adjacent if and only if I ∩ Ann( J ) 6 = (0) and J ∩ Ann( I ) 6 = (0). In this paper, the perfectness of SAG( R ) for some classes of rings R is investigated.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings\",\"authors\":\"Jalali Mitra, Tehranian Abolfazl, Nikandish Reza, Rasouli Hamid\",\"doi\":\"10.14712/1213-7243.2020.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG( R ) with the vertex set A ( R ) ∗ = A ( R ) \\\\ { 0 } and two distinct vertices I and J are adjacent if and only if I ∩ Ann( J ) 6 = (0) and J ∩ Ann( I ) 6 = (0). In this paper, the perfectness of SAG( R ) for some classes of rings R is investigated.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2020.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings
. Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG( R ) with the vertex set A ( R ) ∗ = A ( R ) \ { 0 } and two distinct vertices I and J are adjacent if and only if I ∩ Ann( J ) 6 = (0) and J ∩ Ann( I ) 6 = (0). In this paper, the perfectness of SAG( R ) for some classes of rings R is investigated.