高维定常多轴对称真空黑洞的几何和拓扑

IF 0.7 3区 数学 Q2 MATHEMATICS
Vishnu Kakkat, M. Khuri, Jordan Rainone, G. Weinstein
{"title":"高维定常多轴对称真空黑洞的几何和拓扑","authors":"Vishnu Kakkat, M. Khuri, Jordan Rainone, G. Weinstein","doi":"10.2140/pjm.2023.322.59","DOIUrl":null,"url":null,"abstract":"Extending recent work in 5 dimensions, we prove the existence and uniqueness of solutions to the reduced Einstein equations for vacuum black holes in $(n+3)$-dimensional spacetimes admitting the isometry group $\\mathbb{R}\\times U(1)^{n}$, with Kaluza-Klein asymptotics for $n\\geq3$. This is equivalent to establishing existence and uniqueness for singular harmonic maps $\\varphi: \\mathbb{R}^3\\setminus\\Gamma\\rightarrow SL(n+1,\\mathbb{R})/SO(n+1)$ with prescribed blow-up along $\\Gamma$, a subset of the $z$-axis in $\\mathbb{R}^3$. We also analyze the topology of the domain of outer communication for these spacetimes, by developing an appropriate generalization of the plumbing construction used in the lower dimensional case. Furthermore, we provide a counterexample to a conjecture of Hollands-Ishibashi concerning the topological classification of the domain of outer communication. A refined version of the conjecture is then presented and established in spacetime dimensions less than 8.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The geometry and topology of stationary multiaxisymmetric vacuum black holes in higher dimensions\",\"authors\":\"Vishnu Kakkat, M. Khuri, Jordan Rainone, G. Weinstein\",\"doi\":\"10.2140/pjm.2023.322.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extending recent work in 5 dimensions, we prove the existence and uniqueness of solutions to the reduced Einstein equations for vacuum black holes in $(n+3)$-dimensional spacetimes admitting the isometry group $\\\\mathbb{R}\\\\times U(1)^{n}$, with Kaluza-Klein asymptotics for $n\\\\geq3$. This is equivalent to establishing existence and uniqueness for singular harmonic maps $\\\\varphi: \\\\mathbb{R}^3\\\\setminus\\\\Gamma\\\\rightarrow SL(n+1,\\\\mathbb{R})/SO(n+1)$ with prescribed blow-up along $\\\\Gamma$, a subset of the $z$-axis in $\\\\mathbb{R}^3$. We also analyze the topology of the domain of outer communication for these spacetimes, by developing an appropriate generalization of the plumbing construction used in the lower dimensional case. Furthermore, we provide a counterexample to a conjecture of Hollands-Ishibashi concerning the topological classification of the domain of outer communication. A refined version of the conjecture is then presented and established in spacetime dimensions less than 8.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.59\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.59","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

扩展最近在5维上的工作,我们证明了$(n+3)$维时空中真空黑洞的约化爱因斯坦方程的解的存在性和唯一性,承认等距群$\mathbb{R}\times U(1)^{n}$,具有$n\geq3$的Kaluza-Klein渐近性。这等价于建立奇异调和映射$\varphi:\mathbb{R}^3\setminus\Gamma\rightarrow SL(n+1,\mathbb{R})/SO(n+1)$的存在性和唯一性,该映射沿着$\Gamma$($\mathbb{R}^3$中$z$轴的子集)具有规定的爆破。我们还通过对低维情况下使用的管道结构进行适当的概括,分析了这些时空的外部通信领域的拓扑结构。此外,我们还提供了Hollands-Ishibashi关于外部通信领域拓扑分类的一个猜想的反例。然后,在小于8的时空维度上提出并建立了该猜想的精化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry and topology of stationary multiaxisymmetric vacuum black holes in higher dimensions
Extending recent work in 5 dimensions, we prove the existence and uniqueness of solutions to the reduced Einstein equations for vacuum black holes in $(n+3)$-dimensional spacetimes admitting the isometry group $\mathbb{R}\times U(1)^{n}$, with Kaluza-Klein asymptotics for $n\geq3$. This is equivalent to establishing existence and uniqueness for singular harmonic maps $\varphi: \mathbb{R}^3\setminus\Gamma\rightarrow SL(n+1,\mathbb{R})/SO(n+1)$ with prescribed blow-up along $\Gamma$, a subset of the $z$-axis in $\mathbb{R}^3$. We also analyze the topology of the domain of outer communication for these spacetimes, by developing an appropriate generalization of the plumbing construction used in the lower dimensional case. Furthermore, we provide a counterexample to a conjecture of Hollands-Ishibashi concerning the topological classification of the domain of outer communication. A refined version of the conjecture is then presented and established in spacetime dimensions less than 8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信