有向超图的路径同调

IF 0.8 4区 数学 Q2 MATHEMATICS
Y. Muranov, A. Szczepkowska, V. Vershinin
{"title":"有向超图的路径同调","authors":"Y. Muranov, A. Szczepkowska, V. Vershinin","doi":"10.4310/hha.2022.v24.n2.a18","DOIUrl":null,"url":null,"abstract":"We describe various path homology theories constructed for a directed hypergraph. We introduce the category of directed hypergraphs and the notion of a homotopy in this category. Also, we investigate the functoriality and the homotopy invariance of the introduced path homology groups. We provide examples of computation of these homology groups.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Path homology of directed hypergraphs\",\"authors\":\"Y. Muranov, A. Szczepkowska, V. Vershinin\",\"doi\":\"10.4310/hha.2022.v24.n2.a18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe various path homology theories constructed for a directed hypergraph. We introduce the category of directed hypergraphs and the notion of a homotopy in this category. Also, we investigate the functoriality and the homotopy invariance of the introduced path homology groups. We provide examples of computation of these homology groups.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2022.v24.n2.a18\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了为有向超图构造的各种路径同调理论。我们引入了有向超图的范畴和这个范畴中的同伦图的概念。此外,我们还研究了引入的路径同调群的函数性和同态不变性。我们提供了计算这些同调群的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path homology of directed hypergraphs
We describe various path homology theories constructed for a directed hypergraph. We introduce the category of directed hypergraphs and the notion of a homotopy in this category. Also, we investigate the functoriality and the homotopy invariance of the introduced path homology groups. We provide examples of computation of these homology groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信