Anuradha Pandey, Vipin Kumar, A. Rawat, Nekram Rawal
{"title":"利用机器学习技术预测风速对大气污染水平的影响","authors":"Anuradha Pandey, Vipin Kumar, A. Rawat, Nekram Rawal","doi":"10.1515/cppm-2022-0052","DOIUrl":null,"url":null,"abstract":"Abstract Air pollution is one of the most challenging issues poses serious threat to human health and environment. The increasing influx of population in metropolitan cities has further worsened the situation. Quantifying the air pollution experimentally is quite a challenging task as it depends on many parameters viz., wind speed, wind temperature, relative humidity, temperature etc. It requires the investment of huge money and manpower for controlling air pollution. Machine learning technique-based computer modelling reduces both of the parameters. In the present work, the dependence of air pollution level on wind speed and temperature has been taken up using machine learning in the form of ANN and LSTM model. The recorded data of air pollution level (PM2.5) is collected from a measurement station of Lucknow city situated at Central School, CPCB. The data is used in an Artificial Neural based network and in an LSTM model to predict suitably the level of air pollution for a known value of average wind speed and temperature without experimental measurements. LSTM model is found to predict the pollution level better than ANN for the developed ANN networks.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of effect of wind speed on air pollution level using machine learning technique\",\"authors\":\"Anuradha Pandey, Vipin Kumar, A. Rawat, Nekram Rawal\",\"doi\":\"10.1515/cppm-2022-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Air pollution is one of the most challenging issues poses serious threat to human health and environment. The increasing influx of population in metropolitan cities has further worsened the situation. Quantifying the air pollution experimentally is quite a challenging task as it depends on many parameters viz., wind speed, wind temperature, relative humidity, temperature etc. It requires the investment of huge money and manpower for controlling air pollution. Machine learning technique-based computer modelling reduces both of the parameters. In the present work, the dependence of air pollution level on wind speed and temperature has been taken up using machine learning in the form of ANN and LSTM model. The recorded data of air pollution level (PM2.5) is collected from a measurement station of Lucknow city situated at Central School, CPCB. The data is used in an Artificial Neural based network and in an LSTM model to predict suitably the level of air pollution for a known value of average wind speed and temperature without experimental measurements. LSTM model is found to predict the pollution level better than ANN for the developed ANN networks.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Prediction of effect of wind speed on air pollution level using machine learning technique
Abstract Air pollution is one of the most challenging issues poses serious threat to human health and environment. The increasing influx of population in metropolitan cities has further worsened the situation. Quantifying the air pollution experimentally is quite a challenging task as it depends on many parameters viz., wind speed, wind temperature, relative humidity, temperature etc. It requires the investment of huge money and manpower for controlling air pollution. Machine learning technique-based computer modelling reduces both of the parameters. In the present work, the dependence of air pollution level on wind speed and temperature has been taken up using machine learning in the form of ANN and LSTM model. The recorded data of air pollution level (PM2.5) is collected from a measurement station of Lucknow city situated at Central School, CPCB. The data is used in an Artificial Neural based network and in an LSTM model to predict suitably the level of air pollution for a known value of average wind speed and temperature without experimental measurements. LSTM model is found to predict the pollution level better than ANN for the developed ANN networks.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.