关于广义度概念在$\mathbb{C}^{d}$中的超限直径

IF 0.3 4区 数学 Q4 MATHEMATICS
N. Levenberg, F. Wielonsky
{"title":"关于广义度概念在$\\mathbb{C}^{d}$中的超限直径","authors":"N. Levenberg, F. Wielonsky","doi":"10.7146/math.scand.a-126053","DOIUrl":null,"url":null,"abstract":"We give a general formula for the $C$-transfinite diameter $\\delta_C(K)$ of a compact set $K\\subset \\mathbb{C}^2$ which is a product of univariate compacta where $C\\subset (\\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\\delta_C(K)$ and the $C$-Robin function $\\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \\subset (\\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\\delta_C(K)$ can be extended to include many nonconvex bodies $C\\subset \\mathbb{R}^d$ for $d$-circled sets $K\\subset \\mathbb{C}^d$, and we prove an integral formula for $\\delta_C(K)$ which we use to compute a formula for $\\delta_C(\\mathbb{B})$ where $\\mathbb{B}$ is the Euclidean unit ball in $\\mathbb{C}^2$.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On transfinite diameters in $\\\\mathbb{C}^{d}$ for generalized notions of degree\",\"authors\":\"N. Levenberg, F. Wielonsky\",\"doi\":\"10.7146/math.scand.a-126053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a general formula for the $C$-transfinite diameter $\\\\delta_C(K)$ of a compact set $K\\\\subset \\\\mathbb{C}^2$ which is a product of univariate compacta where $C\\\\subset (\\\\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\\\\delta_C(K)$ and the $C$-Robin function $\\\\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \\\\subset (\\\\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\\\\delta_C(K)$ can be extended to include many nonconvex bodies $C\\\\subset \\\\mathbb{R}^d$ for $d$-circled sets $K\\\\subset \\\\mathbb{C}^d$, and we prove an integral formula for $\\\\delta_C(K)$ which we use to compute a formula for $\\\\delta_C(\\\\mathbb{B})$ where $\\\\mathbb{B}$ is the Euclidean unit ball in $\\\\mathbb{C}^2$.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-126053\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了紧致集$K\subet \mathbb{C}^2$的$C$-超限直径$\delta_C(K)$的一个通式,该紧致集是单变量紧致集的乘积,其中$C\subet(\mathbb{R}^+)^2$是凸体。在此过程中,我们证明了一个Rumely型公式,它涉及$\delta_C(K)$和顶点为$(0,0)$、$(b,0)$和$(0,a)$的三角形$T_。最后,我们展示了$\data_C(K)$的定义如何被扩展到包括$d$的带圆圈集$K\subet\mathbb{C}^d$的许多非凸体$C\subet\athbb{R}^d$,并且我们证明了$\deta_C(K)$的积分公式,我们用它来计算$\data_C(\mathbb{B})$的公式,其中$\mathbb}B}$是$\mathbb{C}^2$中的欧几里得单位球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On transfinite diameters in $\mathbb{C}^{d}$ for generalized notions of degree
We give a general formula for the $C$-transfinite diameter $\delta_C(K)$ of a compact set $K\subset \mathbb{C}^2$ which is a product of univariate compacta where $C\subset (\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\delta_C(K)$ and the $C$-Robin function $\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \subset (\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\delta_C(K)$ can be extended to include many nonconvex bodies $C\subset \mathbb{R}^d$ for $d$-circled sets $K\subset \mathbb{C}^d$, and we prove an integral formula for $\delta_C(K)$ which we use to compute a formula for $\delta_C(\mathbb{B})$ where $\mathbb{B}$ is the Euclidean unit ball in $\mathbb{C}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信