基于图的$3$同构访问结构上的理想秘密共享方案

IF 0.6 Q3 MATHEMATICS
Shahrooz Janbaz, Bagher Bagherpour, A. Zaghian
{"title":"基于图的$3$同构访问结构上的理想秘密共享方案","authors":"Shahrooz Janbaz, Bagher Bagherpour, A. Zaghian","doi":"10.22108/TOC.2021.123661.1739","DOIUrl":null,"url":null,"abstract":"‎The characterization of the ideal access structures is one of the main open problems in secret sharing and is important from both practical and theoretical points of views‎. ‎A graph-based $3-$homogeneous access structure is an access structure in which the participants are the vertices of a connected graph and every subset of the vertices is a minimal qualified subset if it has three vertices and induces a connected graph‎. ‎In this paper‎, ‎we introduce the graph-based $3-$homogeneous access structures and characterize the ideal graph-based $3$-homogeneous access structures‎. ‎We prove that for every non-ideal graph-based $3$-homogeneous access structure over the graph $G$ with the maximum degree $d$ there exists a secret sharing scheme with an information rate $frac{1}{d+1}$‎. ‎Furthermore‎, ‎we mention three forbidden configurations that are useful in characterizing other families of ideal access structures‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"107-120"},"PeriodicalIF":0.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ideal secret sharing schemes on graph-based $3$-homogeneous access structures\",\"authors\":\"Shahrooz Janbaz, Bagher Bagherpour, A. Zaghian\",\"doi\":\"10.22108/TOC.2021.123661.1739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎The characterization of the ideal access structures is one of the main open problems in secret sharing and is important from both practical and theoretical points of views‎. ‎A graph-based $3-$homogeneous access structure is an access structure in which the participants are the vertices of a connected graph and every subset of the vertices is a minimal qualified subset if it has three vertices and induces a connected graph‎. ‎In this paper‎, ‎we introduce the graph-based $3-$homogeneous access structures and characterize the ideal graph-based $3$-homogeneous access structures‎. ‎We prove that for every non-ideal graph-based $3$-homogeneous access structure over the graph $G$ with the maximum degree $d$ there exists a secret sharing scheme with an information rate $frac{1}{d+1}$‎. ‎Furthermore‎, ‎we mention three forbidden configurations that are useful in characterizing other families of ideal access structures‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"107-120\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2021.123661.1739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.123661.1739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

‎理想访问结构的特征是秘密共享中的主要开放问题之一,从实践和理论角度来看都很重要‎. ‎基于图的$3-$齐次访问结构是一种访问结构,其中参与者是连通图的顶点,并且顶点的每个子集都是最小合格子集,如果它有三个顶点并诱导一个连通图‎. ‎在本文中‎, ‎我们引入了基于图的$3-$同构访问结构,并刻画了理想的基于图的[3$-同构访问结构‎. ‎我们证明了在最大度为$d$的图$G$上,对于每一个基于非理想图的$3$-同构访问结构,都存在一个信息率为$frac{1}{d+1}的秘密共享方案$‎. ‎此外‎, ‎我们提到了三种被禁止的构型,这三种构型在表征其他理想通路结构族时是有用的‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideal secret sharing schemes on graph-based $3$-homogeneous access structures
‎The characterization of the ideal access structures is one of the main open problems in secret sharing and is important from both practical and theoretical points of views‎. ‎A graph-based $3-$homogeneous access structure is an access structure in which the participants are the vertices of a connected graph and every subset of the vertices is a minimal qualified subset if it has three vertices and induces a connected graph‎. ‎In this paper‎, ‎we introduce the graph-based $3-$homogeneous access structures and characterize the ideal graph-based $3$-homogeneous access structures‎. ‎We prove that for every non-ideal graph-based $3$-homogeneous access structure over the graph $G$ with the maximum degree $d$ there exists a secret sharing scheme with an information rate $frac{1}{d+1}$‎. ‎Furthermore‎, ‎we mention three forbidden configurations that are useful in characterizing other families of ideal access structures‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信