基于人工神经网络的恒星氦燃烧保形分数模型

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
E. Abdel-salam, M. Nouh, Y. A. Azzam, M. Jazmati
{"title":"基于人工神经网络的恒星氦燃烧保形分数模型","authors":"E. Abdel-salam, M. Nouh, Y. A. Azzam, M. Jazmati","doi":"10.22541/au.160616166.67887623/v1","DOIUrl":null,"url":null,"abstract":"The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameterα=0.5−1with stepΔα=0.05. We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar burning networks.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks\",\"authors\":\"E. Abdel-salam, M. Nouh, Y. A. Azzam, M. Jazmati\",\"doi\":\"10.22541/au.160616166.67887623/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameterα=0.5−1with stepΔα=0.05. We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar burning networks.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22541/au.160616166.67887623/v1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22541/au.160616166.67887623/v1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

氦燃烧阶段代表了恒星内部消耗核燃料的第二阶段。在这个阶段,碳、氧和氖这三种元素被合成。本文有两个方面:首先,对氦燃烧网络的保形分数阶微分方程组进行了解析解,为此,我们使用级数展开法,得到了氦、碳、氧和氖的乘积丰度的递推关系。使用四种不同的初始丰度,我们计算了44个气体模型,覆盖了分数参数α=0.5−1的范围,步长Δα=0.05。我们发现分数参数对产物丰度的影响很小,这与之前的研究结果一致。其次,我们介绍了神经网络的数学模型,并开发了一种使用前馈过程模拟氦气燃烧网络的神经网络算法。神经网络和分析模型之间的比较表明,所有气体模型都非常一致。我们发现,神经网络可以被认为是求解和建模核燃烧网络的强大工具,并可以应用于其他核恒星燃烧网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks
The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameterα=0.5−1with stepΔα=0.05. We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar burning networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信