基于时变流中改进势场算法的三维水下路径规划

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE
Shasha Wang, Guilin Feng, Dan Wang, Yulong Tuo
{"title":"基于时变流中改进势场算法的三维水下路径规划","authors":"Shasha Wang, Guilin Feng, Dan Wang, Yulong Tuo","doi":"10.2478/pomr-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the AUV path planning effectively and successfully in a 3D underwater environment.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"30 1","pages":"33 - 42"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Underwater Path Planning Based on Modified Potential Field Algorithm in Time-Varying Current\",\"authors\":\"Shasha Wang, Guilin Feng, Dan Wang, Yulong Tuo\",\"doi\":\"10.2478/pomr-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the AUV path planning effectively and successfully in a 3D underwater environment.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"30 1\",\"pages\":\"33 - 42\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0004\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了自主水下航行器(AUV)在时变电流中的三维水下路径规划问题。结合速度矢量合成方法,提出了一种改进的人工势场算法来搜索最优路径。设计了改进势场(MPF)算法来动态规划非碰撞路径。同时,该改进方法也被证明是解决障碍物附近不可达目标(GNRON)、U型陷阱和旋转不可达问题的有效方法。为了抵消时变电流的影响,设计了速度合成方法来调整AUV的运动方向。此外,考虑到复杂水下环境下的路径规划,使用了多波束前视声纳(FLS)模型。最后,仿真研究表明,所设计的算法能够在三维水下环境中有效、成功地实现AUV路径规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Underwater Path Planning Based on Modified Potential Field Algorithm in Time-Varying Current
Abstract The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the AUV path planning effectively and successfully in a 3D underwater environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信