使用无人机图像对未铺砌道路进行分离和优先铺砌

IF 3.5 Q2 ENVIRONMENTAL SCIENCES
Mohammad Mansourmoghaddam, Hamidreza Ghafarian Malamiri, F. Arabi Aliabad, M. Fallah Tafti, Mohamadreza Haghani, S. Shojaei
{"title":"使用无人机图像对未铺砌道路进行分离和优先铺砌","authors":"Mohammad Mansourmoghaddam, Hamidreza Ghafarian Malamiri, F. Arabi Aliabad, M. Fallah Tafti, Mohamadreza Haghani, S. Shojaei","doi":"10.1177/11786221221086285","DOIUrl":null,"url":null,"abstract":"Prioritization of pathways to perform asphalt pavement operations has always been one of the most important concerns for municipalities, for which, currently there is no specific planning and pattern. In the present study, using (Unmanned Aerial Vehicle) UAV images, a land cover map of the case study was prepared. For this purpose, the accuracy of various object-based classification methods including the Bayes method, the Support Vector Machine (SVM), the K nearest neighbor (KNN), the Decision tree (DT), and the Random tree (RT) was investigated. Findings of the study showed that by increasing heterogeneity in the composition of the studied phenomenon in the image, different classification algorithms offer results different from each other. The obtained results of the accuracy evaluation of classification methods indicate that the SVM method with 80% kappa coefficient and 89% overall accuracy had the best performance compared to other methods. As a result, built-up land covers, bare land, vegetation cover, and paved roads were separated using this method. Then, the exact boundary of pathways was prepared using Google Earth images, and then, using the land-use map prepared from the case study, the roads were divided into two categories: paved and unpaved. To determine the prioritization of unpaved roads for applying asphalt, the proportion of built-up lands (BUL) to bare (non-built-up) lands (BL) was used in each path. Based on the obtained results, 1% of the roads in the case study was placed on a very high level of asphalt, and then 9%, 3%, 49%, 38%, were placed on a high priority to low priority, respectively.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using UAV Images\",\"authors\":\"Mohammad Mansourmoghaddam, Hamidreza Ghafarian Malamiri, F. Arabi Aliabad, M. Fallah Tafti, Mohamadreza Haghani, S. Shojaei\",\"doi\":\"10.1177/11786221221086285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prioritization of pathways to perform asphalt pavement operations has always been one of the most important concerns for municipalities, for which, currently there is no specific planning and pattern. In the present study, using (Unmanned Aerial Vehicle) UAV images, a land cover map of the case study was prepared. For this purpose, the accuracy of various object-based classification methods including the Bayes method, the Support Vector Machine (SVM), the K nearest neighbor (KNN), the Decision tree (DT), and the Random tree (RT) was investigated. Findings of the study showed that by increasing heterogeneity in the composition of the studied phenomenon in the image, different classification algorithms offer results different from each other. The obtained results of the accuracy evaluation of classification methods indicate that the SVM method with 80% kappa coefficient and 89% overall accuracy had the best performance compared to other methods. As a result, built-up land covers, bare land, vegetation cover, and paved roads were separated using this method. Then, the exact boundary of pathways was prepared using Google Earth images, and then, using the land-use map prepared from the case study, the roads were divided into two categories: paved and unpaved. To determine the prioritization of unpaved roads for applying asphalt, the proportion of built-up lands (BUL) to bare (non-built-up) lands (BL) was used in each path. Based on the obtained results, 1% of the roads in the case study was placed on a very high level of asphalt, and then 9%, 3%, 49%, 38%, were placed on a high priority to low priority, respectively.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221221086285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221221086285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 6

摘要

沥青路面作业道路的优先顺序一直是市政当局最关心的问题之一,目前还没有具体的规划和模式。在本研究中,使用(无人机)无人机图像,编制了案例研究的土地覆盖图。为此,研究了各种基于对象的分类方法的准确性,包括贝叶斯方法、支持向量机(SVM)、K近邻(KNN)、决策树(DT)和随机树(RT)。研究结果表明,通过增加图像中所研究现象组成的异质性,不同的分类算法提供了彼此不同的结果。对分类方法的准确度评估结果表明,与其他方法相比,具有80%kappa系数和89%总体准确度的SVM方法具有最好的性能。因此,使用这种方法将建成区土地覆盖、裸露土地、植被覆盖和铺砌道路分开。然后,使用谷歌地球图像绘制出道路的确切边界,然后,使用案例研究中绘制的土地使用地图,将道路分为两类:铺砌和未铺砌。为了确定未铺砌道路铺设沥青的优先顺序,在每条道路中使用了建成区(BUL)与裸(非建成区)土地(BL)的比例。根据获得的结果,案例研究中1%的道路被置于非常高的沥青水平上,然后分别有9%、3%、49%、38%被置于高优先级到低优先级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using UAV Images
Prioritization of pathways to perform asphalt pavement operations has always been one of the most important concerns for municipalities, for which, currently there is no specific planning and pattern. In the present study, using (Unmanned Aerial Vehicle) UAV images, a land cover map of the case study was prepared. For this purpose, the accuracy of various object-based classification methods including the Bayes method, the Support Vector Machine (SVM), the K nearest neighbor (KNN), the Decision tree (DT), and the Random tree (RT) was investigated. Findings of the study showed that by increasing heterogeneity in the composition of the studied phenomenon in the image, different classification algorithms offer results different from each other. The obtained results of the accuracy evaluation of classification methods indicate that the SVM method with 80% kappa coefficient and 89% overall accuracy had the best performance compared to other methods. As a result, built-up land covers, bare land, vegetation cover, and paved roads were separated using this method. Then, the exact boundary of pathways was prepared using Google Earth images, and then, using the land-use map prepared from the case study, the roads were divided into two categories: paved and unpaved. To determine the prioritization of unpaved roads for applying asphalt, the proportion of built-up lands (BUL) to bare (non-built-up) lands (BL) was used in each path. Based on the obtained results, 1% of the roads in the case study was placed on a very high level of asphalt, and then 9%, 3%, 49%, 38%, were placed on a high priority to low priority, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信