Mohamed Khatif Tawaf Mohamed Yusof, S. Sharipudin, Shahrul Nizam Mohammad, A. Roslan, Z. Michael, Ilya Izyan Shahrul Azhar, Nurrul Amilin Zainal Abidin
{"title":"棕榈油锅炉灰(POBA)部分替代泡沫混凝土中砂的可行性研究","authors":"Mohamed Khatif Tawaf Mohamed Yusof, S. Sharipudin, Shahrul Nizam Mohammad, A. Roslan, Z. Michael, Ilya Izyan Shahrul Azhar, Nurrul Amilin Zainal Abidin","doi":"10.22630/srees.2314","DOIUrl":null,"url":null,"abstract":"A study was conducted to explore the effect of palm oil boiler ash (POBA) on foamed concrete by varying the percentage of POBA over sand quantities (0, 4, 8 and 12%). This paper primarily discusses the water absorption test, uniaxial compressive strength, and dry density findings. It indicates that substituting sand with POBA greatly enhances the strength of foamed concrete. When the quantity of POBA was raised up to 12% throughout all curing times, the compressive strength steadily increased in the range of 4.34–13.50 N·mm–2. Furthermore, the dry density of foamed concrete was shown to be directly related to the fraction of POBA in the mixture. The dry density of foamed concrete increases as the amount of POBA increases. Despite this, water absorption shown that increasing POBA increases water absorption percentage in foamed concrete from 7.4 to 10.4%. This is due to the fact that a composition with a high POBA percentage will generate more pores than a mixture with a low POBA percentage.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of palm oil boiler ash (POBA) as a partial replacement of sand in foamed concrete\",\"authors\":\"Mohamed Khatif Tawaf Mohamed Yusof, S. Sharipudin, Shahrul Nizam Mohammad, A. Roslan, Z. Michael, Ilya Izyan Shahrul Azhar, Nurrul Amilin Zainal Abidin\",\"doi\":\"10.22630/srees.2314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study was conducted to explore the effect of palm oil boiler ash (POBA) on foamed concrete by varying the percentage of POBA over sand quantities (0, 4, 8 and 12%). This paper primarily discusses the water absorption test, uniaxial compressive strength, and dry density findings. It indicates that substituting sand with POBA greatly enhances the strength of foamed concrete. When the quantity of POBA was raised up to 12% throughout all curing times, the compressive strength steadily increased in the range of 4.34–13.50 N·mm–2. Furthermore, the dry density of foamed concrete was shown to be directly related to the fraction of POBA in the mixture. The dry density of foamed concrete increases as the amount of POBA increases. Despite this, water absorption shown that increasing POBA increases water absorption percentage in foamed concrete from 7.4 to 10.4%. This is due to the fact that a composition with a high POBA percentage will generate more pores than a mixture with a low POBA percentage.\",\"PeriodicalId\":38397,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/srees.2314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/srees.2314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Feasibility study of palm oil boiler ash (POBA) as a partial replacement of sand in foamed concrete
A study was conducted to explore the effect of palm oil boiler ash (POBA) on foamed concrete by varying the percentage of POBA over sand quantities (0, 4, 8 and 12%). This paper primarily discusses the water absorption test, uniaxial compressive strength, and dry density findings. It indicates that substituting sand with POBA greatly enhances the strength of foamed concrete. When the quantity of POBA was raised up to 12% throughout all curing times, the compressive strength steadily increased in the range of 4.34–13.50 N·mm–2. Furthermore, the dry density of foamed concrete was shown to be directly related to the fraction of POBA in the mixture. The dry density of foamed concrete increases as the amount of POBA increases. Despite this, water absorption shown that increasing POBA increases water absorption percentage in foamed concrete from 7.4 to 10.4%. This is due to the fact that a composition with a high POBA percentage will generate more pores than a mixture with a low POBA percentage.
期刊介绍:
Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.