{"title":"克服胶质母细胞瘤中的T细胞耗竭:叙述性综述","authors":"Xuya Wang, Xisen Wang, Jiabo Li","doi":"10.4103/glioma.glioma_16_22","DOIUrl":null,"url":null,"abstract":"Immunotherapy is typically ineffective against glioblastoma (GBM) due to inherent and adaptive resistance. Initial immunotherapy results for GBM have been disappointing. In this regard, T-cell exhaustion is a major barrier to successful treatment. The recognition of exhausted CD8+ T cell (Tex) pedigree is currently undergoing a paradigm shift. This review introduces major findings in this field to provide an up-to-date perspective on epigenetic, transcriptional, metabolic, and spatial heterogeneity, as well as interactions with tumor microenvironment cells of anti-tumoral CD8+ Tex from the following aspects: (i) Epigenetic and transcriptional mechanisms underlying T-cell exhaustion, (ii) Metabolic factors underpinning T-cell exhaustion, (iii) Contribution of multiple cell types to T-cell exhaustion, (iv) Occurrence of T-cell exhaustion at multiple locations, and (v) T-cell exhaustion may not always be terminal. These novel insights afford a wide range of new therapeutic approaches to overcome T-cell exhaustion in GBM.","PeriodicalId":12731,"journal":{"name":"Glioma","volume":"5 1","pages":"56 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming T-cell exhaustion in glioblastoma: A narrative review\",\"authors\":\"Xuya Wang, Xisen Wang, Jiabo Li\",\"doi\":\"10.4103/glioma.glioma_16_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immunotherapy is typically ineffective against glioblastoma (GBM) due to inherent and adaptive resistance. Initial immunotherapy results for GBM have been disappointing. In this regard, T-cell exhaustion is a major barrier to successful treatment. The recognition of exhausted CD8+ T cell (Tex) pedigree is currently undergoing a paradigm shift. This review introduces major findings in this field to provide an up-to-date perspective on epigenetic, transcriptional, metabolic, and spatial heterogeneity, as well as interactions with tumor microenvironment cells of anti-tumoral CD8+ Tex from the following aspects: (i) Epigenetic and transcriptional mechanisms underlying T-cell exhaustion, (ii) Metabolic factors underpinning T-cell exhaustion, (iii) Contribution of multiple cell types to T-cell exhaustion, (iv) Occurrence of T-cell exhaustion at multiple locations, and (v) T-cell exhaustion may not always be terminal. These novel insights afford a wide range of new therapeutic approaches to overcome T-cell exhaustion in GBM.\",\"PeriodicalId\":12731,\"journal\":{\"name\":\"Glioma\",\"volume\":\"5 1\",\"pages\":\"56 - 61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glioma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/glioma.glioma_16_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glioma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/glioma.glioma_16_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming T-cell exhaustion in glioblastoma: A narrative review
Immunotherapy is typically ineffective against glioblastoma (GBM) due to inherent and adaptive resistance. Initial immunotherapy results for GBM have been disappointing. In this regard, T-cell exhaustion is a major barrier to successful treatment. The recognition of exhausted CD8+ T cell (Tex) pedigree is currently undergoing a paradigm shift. This review introduces major findings in this field to provide an up-to-date perspective on epigenetic, transcriptional, metabolic, and spatial heterogeneity, as well as interactions with tumor microenvironment cells of anti-tumoral CD8+ Tex from the following aspects: (i) Epigenetic and transcriptional mechanisms underlying T-cell exhaustion, (ii) Metabolic factors underpinning T-cell exhaustion, (iii) Contribution of multiple cell types to T-cell exhaustion, (iv) Occurrence of T-cell exhaustion at multiple locations, and (v) T-cell exhaustion may not always be terminal. These novel insights afford a wide range of new therapeutic approaches to overcome T-cell exhaustion in GBM.