{"title":"具有非局部边界条件的时间尺度上的超线性阻尼振动问题","authors":"Yongfang Wei, Zhanbing Bai","doi":"10.15388/namc.2022.27.28343","DOIUrl":null,"url":null,"abstract":"This paper studies a class of superlinear damped vibration equations with nonlocal boundary conditions on time scales by using the calculus of variations. We consider the Cerami condition, while the nonlinear term does not satisfy Ambrosetti–Rabinowitz condition such that the critical point theory could be applied. Then we establish the variational structure in an appropriate Sobolev’s space, obtain the existence of infinitely many large energy solutions. Finally, two examples are given to prove our results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlinear damped vibration problems on time scales with nonlocal boundary conditions\",\"authors\":\"Yongfang Wei, Zhanbing Bai\",\"doi\":\"10.15388/namc.2022.27.28343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a class of superlinear damped vibration equations with nonlocal boundary conditions on time scales by using the calculus of variations. We consider the Cerami condition, while the nonlinear term does not satisfy Ambrosetti–Rabinowitz condition such that the critical point theory could be applied. Then we establish the variational structure in an appropriate Sobolev’s space, obtain the existence of infinitely many large energy solutions. Finally, two examples are given to prove our results.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.28343\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.28343","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Superlinear damped vibration problems on time scales with nonlocal boundary conditions
This paper studies a class of superlinear damped vibration equations with nonlocal boundary conditions on time scales by using the calculus of variations. We consider the Cerami condition, while the nonlinear term does not satisfy Ambrosetti–Rabinowitz condition such that the critical point theory could be applied. Then we establish the variational structure in an appropriate Sobolev’s space, obtain the existence of infinitely many large energy solutions. Finally, two examples are given to prove our results.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.