模函数的乘独立性

Pub Date : 2020-05-27 DOI:10.5802/jtnb.1167
G. Fowler
{"title":"模函数的乘独立性","authors":"G. Fowler","doi":"10.5802/jtnb.1167","DOIUrl":null,"url":null,"abstract":"We provide a new, elementary proof of the multiplicative independence of pairwise distinct $\\mathrm{GL}_2^+(\\mathbb{Q})$-translates of the modular $j$-function, a result due originally to Pila and Tsimerman. We are thereby able to generalise this result to a wider class of modular functions. We show that this class includes a set comprising modular functions which arise naturally as Borcherds lifts of certain weakly holomorphic modular forms. For modular functions $f \\in \\overline{\\mathbb{Q}}(j)$ belonging to this class, we deduce, for each $n \\geq 1$, the finiteness of $n$-tuples of distinct $f$-special points that are multiplicatively dependent and minimal for this property. This generalises a theorem of Pila and Tsimerman on singular moduli. We then show how these results relate to the Zilber--Pink conjecture for subvarieties of the mixed Shimura variety $Y(1)^n \\times \\mathbb{G}_{\\mathrm{m}}^n$ and prove some special cases of this conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiplicative independence of modular functions\",\"authors\":\"G. Fowler\",\"doi\":\"10.5802/jtnb.1167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a new, elementary proof of the multiplicative independence of pairwise distinct $\\\\mathrm{GL}_2^+(\\\\mathbb{Q})$-translates of the modular $j$-function, a result due originally to Pila and Tsimerman. We are thereby able to generalise this result to a wider class of modular functions. We show that this class includes a set comprising modular functions which arise naturally as Borcherds lifts of certain weakly holomorphic modular forms. For modular functions $f \\\\in \\\\overline{\\\\mathbb{Q}}(j)$ belonging to this class, we deduce, for each $n \\\\geq 1$, the finiteness of $n$-tuples of distinct $f$-special points that are multiplicatively dependent and minimal for this property. This generalises a theorem of Pila and Tsimerman on singular moduli. We then show how these results relate to the Zilber--Pink conjecture for subvarieties of the mixed Shimura variety $Y(1)^n \\\\times \\\\mathbb{G}_{\\\\mathrm{m}}^n$ and prove some special cases of this conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提供了成对不同$\mathrm的乘法独立性的一个新的初等证明{GL}_2^+(\mathbb{Q})$-转换模块$j$-函数,这是Pila和Tsimerman最初得到的结果。因此,我们能够将这一结果推广到更广泛的一类模块函数中。我们证明了这一类包括一个集,该集包含当某些弱全纯模形式的Borcherds提升时自然产生的模函数。对于属于这一类的模函数$f\in\overline{\mathbb{Q}}(j)$,我们对每一个$n\geq1$,推导出不同$f$-特点的$n$-元组的有限性,这些特点是乘相关的并且对于这个性质是最小的。这推广了Pila和Tsimerman关于奇异模的一个定理。然后,我们展示了这些结果与混合Shimura变种$Y(1)^n\times\mathbb的子变种的Zilber-Pink猜想之间的关系{G}_{\mathrm{m}}^n$,并证明了该猜想的一些特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiplicative independence of modular functions
We provide a new, elementary proof of the multiplicative independence of pairwise distinct $\mathrm{GL}_2^+(\mathbb{Q})$-translates of the modular $j$-function, a result due originally to Pila and Tsimerman. We are thereby able to generalise this result to a wider class of modular functions. We show that this class includes a set comprising modular functions which arise naturally as Borcherds lifts of certain weakly holomorphic modular forms. For modular functions $f \in \overline{\mathbb{Q}}(j)$ belonging to this class, we deduce, for each $n \geq 1$, the finiteness of $n$-tuples of distinct $f$-special points that are multiplicatively dependent and minimal for this property. This generalises a theorem of Pila and Tsimerman on singular moduli. We then show how these results relate to the Zilber--Pink conjecture for subvarieties of the mixed Shimura variety $Y(1)^n \times \mathbb{G}_{\mathrm{m}}^n$ and prove some special cases of this conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信