具有组合协变量的高维线性对数对比度模型的鲁棒信号恢复

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dongxiao Han, Jian Huang, Yuanyuan Lin, Lei Liu, Lianqiang Qu, Liuquan Sun
{"title":"具有组合协变量的高维线性对数对比度模型的鲁棒信号恢复","authors":"Dongxiao Han, Jian Huang, Yuanyuan Lin, Lei Liu, Lianqiang Qu, Liuquan Sun","doi":"10.1080/07350015.2022.2097911","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with penalization. We establish the and consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Signal Recovery for High-Dimensional Linear Log-Contrast Models with Compositional Covariates\",\"authors\":\"Dongxiao Han, Jian Huang, Yuanyuan Lin, Lei Liu, Lianqiang Qu, Liuquan Sun\",\"doi\":\"10.1080/07350015.2022.2097911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with penalization. We establish the and consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2097911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2097911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,当误差分布可能是重尾和不对称时,我们为高维线性对数对比度模型提出了一种稳健的信号恢复方法。该方法建立在Huber损失的基础上,并进行了惩罚。我们建立了结果估计量的和一致性。在类似于不可表示性条件和最小信号强度条件的条件下,我们证明了斜率参数向量的符号支持可以高概率地恢复。通过模拟研究评估了所提出方法的有限样本行为,并将其应用于GDP满意度数据集和HIV微生物组数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Signal Recovery for High-Dimensional Linear Log-Contrast Models with Compositional Covariates
Abstract In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with penalization. We establish the and consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信