各向同性环面作用的等变形式

Pub Date : 2018-07-24 DOI:10.1007/s40062-018-0207-5
Jeffrey D. Carlson
{"title":"各向同性环面作用的等变形式","authors":"Jeffrey D. Carlson","doi":"10.1007/s40062-018-0207-5","DOIUrl":null,"url":null,"abstract":"<p>Considering the potential equivariant formality of the left action of a connected Lie group <i>K</i> on the homogeneous space <i>G</i>?/?<i>K</i>, we arrive through a sequence of reductions at the case <i>G</i> is compact and simply-connected and <i>K</i> is a torus. We then classify all pairs (<i>G</i>,?<i>S</i>) such that <i>G</i> is compact connected Lie and the embedded circular subgroup <i>S</i> acts equivariantly formally on <i>G</i>?/?<i>S</i>. In the process we provide what seems to be the first published proof of the structure (known to Leray and Koszul) of the cohomology rings</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0207-5","citationCount":"7","resultStr":"{\"title\":\"Equivariant formality of isotropic torus actions\",\"authors\":\"Jeffrey D. Carlson\",\"doi\":\"10.1007/s40062-018-0207-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the potential equivariant formality of the left action of a connected Lie group <i>K</i> on the homogeneous space <i>G</i>?/?<i>K</i>, we arrive through a sequence of reductions at the case <i>G</i> is compact and simply-connected and <i>K</i> is a torus. We then classify all pairs (<i>G</i>,?<i>S</i>) such that <i>G</i> is compact connected Lie and the embedded circular subgroup <i>S</i> acts equivariantly formally on <i>G</i>?/?<i>S</i>. In the process we provide what seems to be the first published proof of the structure (known to Leray and Koszul) of the cohomology rings</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0207-5\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0207-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0207-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

考虑连通李群K在齐次空间G?/?上左作用的潜在等变形式K,我们通过一系列约简得到G是紧化单连通的K是环面。然后,我们对所有对(G,?S)进行分类,使得G是紧连通Lie,并且嵌入的圆子群S等价地作用于G?/?S。在这个过程中,我们提供了似乎是首次发表的关于上同环结构(Leray和Koszul已知)的证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equivariant formality of isotropic torus actions

分享
查看原文
Equivariant formality of isotropic torus actions

Considering the potential equivariant formality of the left action of a connected Lie group K on the homogeneous space G?/?K, we arrive through a sequence of reductions at the case G is compact and simply-connected and K is a torus. We then classify all pairs (G,?S) such that G is compact connected Lie and the embedded circular subgroup S acts equivariantly formally on G?/?S. In the process we provide what seems to be the first published proof of the structure (known to Leray and Koszul) of the cohomology rings

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信