β-Delaunay镶嵌Ⅲ:高维上的Kendall问题和极限定理

Pub Date : 2021-04-15 DOI:10.30757/ALEA.v19-02
A. Gusakova, Z. Kabluchko, Christoph Thale
{"title":"β-Delaunay镶嵌Ⅲ:高维上的Kendall问题和极限定理","authors":"A. Gusakova, Z. Kabluchko, Christoph Thale","doi":"10.30757/ALEA.v19-02","DOIUrl":null,"url":null,"abstract":"The $\\beta$-Delaunay tessellation in $\\mathbb{R}^{d-1}$ is a generalization of the classical Poisson-Delaunay tessellation. As a first result of this paper we show that the shape of a weighted typical cell of a $\\beta$-Delaunay tessellation, conditioned on having large volume, is close to the shape of a regular simplex in $\\mathbb{R}^{d-1}$. This generalizes earlier results of Hug and Schneider about the typical (non-weighted) Poisson-Delaunay simplex. Second, the asymptotic behaviour of the volume of weighted typical cells in high-dimensional $\\beta$-Delaunay tessellation is analysed, as $d\\to\\infty$. In particular, various high dimensional limit theorems, such as quantitative central limit theorems as well as moderate and large deviation principles, are derived.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The β-Delaunay tessellation III: Kendall’s problem and limit theorems in high dimensions\",\"authors\":\"A. Gusakova, Z. Kabluchko, Christoph Thale\",\"doi\":\"10.30757/ALEA.v19-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\beta$-Delaunay tessellation in $\\\\mathbb{R}^{d-1}$ is a generalization of the classical Poisson-Delaunay tessellation. As a first result of this paper we show that the shape of a weighted typical cell of a $\\\\beta$-Delaunay tessellation, conditioned on having large volume, is close to the shape of a regular simplex in $\\\\mathbb{R}^{d-1}$. This generalizes earlier results of Hug and Schneider about the typical (non-weighted) Poisson-Delaunay simplex. Second, the asymptotic behaviour of the volume of weighted typical cells in high-dimensional $\\\\beta$-Delaunay tessellation is analysed, as $d\\\\to\\\\infty$. In particular, various high dimensional limit theorems, such as quantitative central limit theorems as well as moderate and large deviation principles, are derived.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.v19-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v19-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

$\mathbb{R}^{d-1}$中的$\beta$-Delaunay镶嵌是经典Poisson-Delaunay镶嵌的推广。作为本文的第一个结果,我们证明了$\beta$-Delaunay镶嵌的加权典型单元的形状,在具有大体积的条件下,接近$\mathbb{R}^{d-1}$中的正则单纯形的形状。这推广了Hug和Schneider关于典型(非加权)Poisson-Delaunay单纯形的早期结果。其次,分析了高维$\beta$-Delaunay镶嵌中加权典型单元体积的渐近行为,如$d\to\infty$。特别是,导出了各种高维极限定理,如定量中心极限定理以及中偏差和大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The β-Delaunay tessellation III: Kendall’s problem and limit theorems in high dimensions
The $\beta$-Delaunay tessellation in $\mathbb{R}^{d-1}$ is a generalization of the classical Poisson-Delaunay tessellation. As a first result of this paper we show that the shape of a weighted typical cell of a $\beta$-Delaunay tessellation, conditioned on having large volume, is close to the shape of a regular simplex in $\mathbb{R}^{d-1}$. This generalizes earlier results of Hug and Schneider about the typical (non-weighted) Poisson-Delaunay simplex. Second, the asymptotic behaviour of the volume of weighted typical cells in high-dimensional $\beta$-Delaunay tessellation is analysed, as $d\to\infty$. In particular, various high dimensional limit theorems, such as quantitative central limit theorems as well as moderate and large deviation principles, are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信