关于一类由分数积分算子生成的解析函数

IF 0.3 Q4 MATHEMATICS
R. Ibrahim
{"title":"关于一类由分数积分算子生成的解析函数","authors":"R. Ibrahim","doi":"10.1515/conop-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"4 1","pages":"1 - 6"},"PeriodicalIF":0.3000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0001","citationCount":"4","resultStr":"{\"title\":\"On a class of analytic functions generated by fractional integral operator\",\"authors\":\"R. Ibrahim\",\"doi\":\"10.1515/conop-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"4 1\",\"pages\":\"1 - 6\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要在本文中,我们改进了复域中Tsallis熵的概念。这种改进取决于复域中的分数算子(类型为Alexander)。我们阐明了一些新的解析函数类,它们是根据几何函数理论规划的。这类熵称为分数熵;因此,我们要求它们是分数熵几何类。其他几何性质在续集中确立。我们的展览得到了麦克斯韦尔·勒玛和杰克·勒玛的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of analytic functions generated by fractional integral operator
Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信