氧合器和膜氧合器:生物医学应用材料开发和工艺改进的出现、发展和进展

Q2 Materials Science
A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini
{"title":"氧合器和膜氧合器:生物医学应用材料开发和工艺改进的出现、发展和进展","authors":"A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini","doi":"10.22079/JMSR.2021.521505.1431","DOIUrl":null,"url":null,"abstract":"Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications\",\"authors\":\"A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini\",\"doi\":\"10.22079/JMSR.2021.521505.1431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2021.521505.1431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2021.521505.1431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

对高性能血液氧合器的需求不断增加,导致了该领域的不断进步。尽管自它们出现以来取得了进展,但仍然存在威胁膜氧合器可靠性的挑战。解决这些挑战并提高整体工艺性能的一种有前途的方法涉及具有理想特性的材料的选择、开发和改性。本综述的主要推动力是通过阐明充氧器和充氧过程的技术、设计和工程方面,提出重要但探索较少的主题。特别关注膜氧合器及其基本特性,如气体传输、等离子体泄漏和生物相容性。此外,还说明了膜氧合器的各种实际配置及其优点和局限性。从材料的角度来看,考虑到其物理化学和生物相容性特性,对一系列具有膜充氧器应用记录的聚合物材料进行了调查和分析,以深入了解最佳材料的特征。除了详细介绍膜氧合器的制造方法外,还介绍了可用于改变膜的微观结构和表面性能的各种有效技术。此外,还对膜氧合器中的传输现象进行了深入的概述,旨在更好地了解该过程的分子和工艺方面。概述了现有技术的现状,并在最后提供了关于未来发展趋势的要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications
Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信