{"title":"高Q二氧化硅微谐振器中拉曼梳的稳定性和相互相干","authors":"Shuto Sugawara, S. Fujii, S. Kawanishi, T. Tanabe","doi":"10.1364/optcon.493749","DOIUrl":null,"url":null,"abstract":"We investigated the stability and mutual coherence of a Raman microcomb in a silica microrod resonator by monitoring the output power and longitudinal mode spacings. The results indicate that we can obtain a stable Raman comb formation without the need for four-wave mixing processes. The use of a Raman comb will open the possibility of simplifying the setup because it will relax the phase matching condition usually required for microresonator frequency comb generation. Although there are some restrictions in regard to using a Raman comb for applications due to the coexistence of the comb components in different mode families, a proof-of-concept demonstration shows that it is sufficiently stable and robust for applications such as optical communications.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and mutual coherence of Raman combs in high-Q silica microresonators\",\"authors\":\"Shuto Sugawara, S. Fujii, S. Kawanishi, T. Tanabe\",\"doi\":\"10.1364/optcon.493749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the stability and mutual coherence of a Raman microcomb in a silica microrod resonator by monitoring the output power and longitudinal mode spacings. The results indicate that we can obtain a stable Raman comb formation without the need for four-wave mixing processes. The use of a Raman comb will open the possibility of simplifying the setup because it will relax the phase matching condition usually required for microresonator frequency comb generation. Although there are some restrictions in regard to using a Raman comb for applications due to the coexistence of the comb components in different mode families, a proof-of-concept demonstration shows that it is sufficiently stable and robust for applications such as optical communications.\",\"PeriodicalId\":74366,\"journal\":{\"name\":\"Optics continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcon.493749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcon.493749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Stability and mutual coherence of Raman combs in high-Q silica microresonators
We investigated the stability and mutual coherence of a Raman microcomb in a silica microrod resonator by monitoring the output power and longitudinal mode spacings. The results indicate that we can obtain a stable Raman comb formation without the need for four-wave mixing processes. The use of a Raman comb will open the possibility of simplifying the setup because it will relax the phase matching condition usually required for microresonator frequency comb generation. Although there are some restrictions in regard to using a Raman comb for applications due to the coexistence of the comb components in different mode families, a proof-of-concept demonstration shows that it is sufficiently stable and robust for applications such as optical communications.