具有阈值的随机环境中的分支过程

Pub Date : 2022-07-05 DOI:10.1017/apr.2023.26
Giacomo Francisci, A. Vidyashankar
{"title":"具有阈值的随机环境中的分支过程","authors":"Giacomo Francisci, A. Vidyashankar","doi":"10.1017/apr.2023.26","DOIUrl":null,"url":null,"abstract":"\n Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment \n \n \n \n$\\{Z_n\\}$\n\n \n whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points \n \n \n \n$\\{(\\tau_j, \\nu_j)\\}$\n\n \n —specifically the values of the process at crossing times, viz. \n \n \n \n$\\{(Z_{\\tau_j}, Z_{\\nu_j})\\}$\n\n \n —along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching processes in random environments with thresholds\",\"authors\":\"Giacomo Francisci, A. Vidyashankar\",\"doi\":\"10.1017/apr.2023.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment \\n \\n \\n \\n$\\\\{Z_n\\\\}$\\n\\n \\n whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points \\n \\n \\n \\n$\\\\{(\\\\tau_j, \\\\nu_j)\\\\}$\\n\\n \\n —specifically the values of the process at crossing times, viz. \\n \\n \\n \\n$\\\\{(Z_{\\\\tau_j}, Z_{\\\\nu_j})\\\\}$\\n\\n \\n —along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2023.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受COVID动力学应用的启发,我们描述了随机环境$\{Z_n\}$中的分支过程模型,该模型的特征在跨越上阈值和下阈值时发生变化。这引入了一种循环路径行为,包括导致超临界和亚临界状态的增加和减少周期。即使该过程不是马尔可夫的,我们也识别随机时间点$\{(\tau_j,\nu_j)\}$处的子序列——特别是该过程在交叉时间的值,即$\{。在温和矩和正则性条件下,我们建立了子序列具有再生结构,并证明了超临界和亚临界状态下过程生长速率的极限正态分布解耦。因此,我们建立了关于超临界和亚临界状态的长度以及过程在这些状态下花费的时间比例的极限定理。作为我们分析的副产品,我们明确地确定了子代分布、阈值分布和环境序列的泛函方面的极限方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Branching processes in random environments with thresholds
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$ —specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$ —along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信