{"title":"南里海Nowshahr沙滩海岸波浪剖面的数值研究","authors":"Seyed Masoud Mahmoudof, Mohammadali Lotfi Takami","doi":"10.1016/j.oceano.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the capability of the one-dimensional (1D) mode of the Simulating WAves till SHore (SWASH), as a non-hydrostatic wave-flow model with six vertical layers, to reproduce the cross-shore wave evolution. For this purpose, the given model was initially calibrated for wave energy and the outputs were then verified with the field data measured at the Southern Caspian Sea. The calibration coefficients obtained for wave breaking are significantly less than the ones which have been mostly reported in previous studies for the two-dimensional (2D) mode of the SWASH. Although the reproduced wave height parameters are generally in good accordance with the field observations, the period parameters and the number of waves are overestimated and underestimated by the model, respectively. Moreover, the inaccuracies at the shallow stations are worse than at the transitional depths. The overestimation in both the reproduced energy of infragravity waves (IG) and their wavelength along with the underestimation in the wind-wave energy content are also among the factors responsible for the model deficiencies. The findings have revealed that the overestimation of the reproduced IG waves is the main reason for the underestimation of the breaking dissipation rate for irregular wave trains in the 1D mode. Therefore, more intensive breaking dissipation via selecting lower coefficient values is necessary to exhaust a certain energy content from longer waves in the 1D mode. This approach ultimately induces an over-dissipation of short wind-waves.</p></div>","PeriodicalId":54694,"journal":{"name":"Oceanologia","volume":"64 3","pages":"Pages 457-472"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0078323422000252/pdfft?md5=f07f84dd3948318365b8e69be075e015&pid=1-s2.0-S0078323422000252-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Numerical study of coastal wave profiles at the sandy beaches of Nowshahr (Southern Caspian Sea)\",\"authors\":\"Seyed Masoud Mahmoudof, Mohammadali Lotfi Takami\",\"doi\":\"10.1016/j.oceano.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to investigate the capability of the one-dimensional (1D) mode of the Simulating WAves till SHore (SWASH), as a non-hydrostatic wave-flow model with six vertical layers, to reproduce the cross-shore wave evolution. For this purpose, the given model was initially calibrated for wave energy and the outputs were then verified with the field data measured at the Southern Caspian Sea. The calibration coefficients obtained for wave breaking are significantly less than the ones which have been mostly reported in previous studies for the two-dimensional (2D) mode of the SWASH. Although the reproduced wave height parameters are generally in good accordance with the field observations, the period parameters and the number of waves are overestimated and underestimated by the model, respectively. Moreover, the inaccuracies at the shallow stations are worse than at the transitional depths. The overestimation in both the reproduced energy of infragravity waves (IG) and their wavelength along with the underestimation in the wind-wave energy content are also among the factors responsible for the model deficiencies. The findings have revealed that the overestimation of the reproduced IG waves is the main reason for the underestimation of the breaking dissipation rate for irregular wave trains in the 1D mode. Therefore, more intensive breaking dissipation via selecting lower coefficient values is necessary to exhaust a certain energy content from longer waves in the 1D mode. This approach ultimately induces an over-dissipation of short wind-waves.</p></div>\",\"PeriodicalId\":54694,\"journal\":{\"name\":\"Oceanologia\",\"volume\":\"64 3\",\"pages\":\"Pages 457-472\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0078323422000252/pdfft?md5=f07f84dd3948318365b8e69be075e015&pid=1-s2.0-S0078323422000252-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanologia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0078323422000252\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanologia","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0078323422000252","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Numerical study of coastal wave profiles at the sandy beaches of Nowshahr (Southern Caspian Sea)
This study aimed to investigate the capability of the one-dimensional (1D) mode of the Simulating WAves till SHore (SWASH), as a non-hydrostatic wave-flow model with six vertical layers, to reproduce the cross-shore wave evolution. For this purpose, the given model was initially calibrated for wave energy and the outputs were then verified with the field data measured at the Southern Caspian Sea. The calibration coefficients obtained for wave breaking are significantly less than the ones which have been mostly reported in previous studies for the two-dimensional (2D) mode of the SWASH. Although the reproduced wave height parameters are generally in good accordance with the field observations, the period parameters and the number of waves are overestimated and underestimated by the model, respectively. Moreover, the inaccuracies at the shallow stations are worse than at the transitional depths. The overestimation in both the reproduced energy of infragravity waves (IG) and their wavelength along with the underestimation in the wind-wave energy content are also among the factors responsible for the model deficiencies. The findings have revealed that the overestimation of the reproduced IG waves is the main reason for the underestimation of the breaking dissipation rate for irregular wave trains in the 1D mode. Therefore, more intensive breaking dissipation via selecting lower coefficient values is necessary to exhaust a certain energy content from longer waves in the 1D mode. This approach ultimately induces an over-dissipation of short wind-waves.
期刊介绍:
Oceanologia is an international journal that publishes results of original research in the field of marine sciences with emphasis on the European seas.