de Sitter时空中量子化Dirac场的一般协变理论

Q2 Physics and Astronomy
S. feng, M. Mochena
{"title":"de Sitter时空中量子化Dirac场的一般协变理论","authors":"S. feng, M. Mochena","doi":"10.31526/lhep.2021.205","DOIUrl":null,"url":null,"abstract":"As a sequel to our previous work\\cite{Feng2020}, we propose in this paper a quantization scheme for Dirac field in de Sitter spacetime. Our scheme is covariant under both general transformations and Lorentz transformations. We first present a Hamiltonian structure, then quantize the field following the standard approach of constrained systems. For the free field, the time-dependent quantized Hamiltonian is diagonalized by Bogliubov transformation and the eigen-states at each instant are interpreted as the observed particle states at that instant. The measurable energy-momentum of observed particle/antiparticles are the same as obtained for Klein-Gordon field. Moreover, the energy-momentum also satisfies geodesic equation, a feature justifying its measurability. As in \\cite{Feng2020}, though the mathematics is carried out in terms of conformal coordinates for the sake of convenience, the whole theory can be transformed into any other coordinates based on general covariance. It is concluded that particle/antiparticle states, such as vacuum states in particular are time-dependent and vacuum states at one time evolves into non-vacuum states at later times. Formalism of perturbational calculation is provided with an extended Dirac picture.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generally Covariant Theory of Quantized Dirac Field in de Sitter Spacetime\",\"authors\":\"S. feng, M. Mochena\",\"doi\":\"10.31526/lhep.2021.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a sequel to our previous work\\\\cite{Feng2020}, we propose in this paper a quantization scheme for Dirac field in de Sitter spacetime. Our scheme is covariant under both general transformations and Lorentz transformations. We first present a Hamiltonian structure, then quantize the field following the standard approach of constrained systems. For the free field, the time-dependent quantized Hamiltonian is diagonalized by Bogliubov transformation and the eigen-states at each instant are interpreted as the observed particle states at that instant. The measurable energy-momentum of observed particle/antiparticles are the same as obtained for Klein-Gordon field. Moreover, the energy-momentum also satisfies geodesic equation, a feature justifying its measurability. As in \\\\cite{Feng2020}, though the mathematics is carried out in terms of conformal coordinates for the sake of convenience, the whole theory can be transformed into any other coordinates based on general covariance. It is concluded that particle/antiparticle states, such as vacuum states in particular are time-dependent and vacuum states at one time evolves into non-vacuum states at later times. Formalism of perturbational calculation is provided with an extended Dirac picture.\",\"PeriodicalId\":36085,\"journal\":{\"name\":\"Letters in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31526/lhep.2021.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/lhep.2021.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

作为我们之前工作的续集,我们在本文中提出了德西特时空中狄拉克场的量子化方案。我们的方案在一般变换和洛伦兹变换下都是协变的。我们首先提出了一个哈密顿结构,然后按照约束系统的标准方法对场进行量化。对于自由场,通过Bogliubov变换将含时量子化哈密顿量对角化,并将每个时刻的本征态解释为该时刻观测到的粒子态。观测到的粒子/反粒子的可测量能量动量与克莱因-戈登场获得的能量动量相同。此外,能量动量也满足测地方程,这是证明其可测量性的一个特征。正如在{Feng2020}中所述,尽管为了方便起见,数学是根据共形坐标进行的,但整个理论可以基于一般协方差转换为任何其他坐标。得出的结论是,粒子/反粒子态,特别是真空态,是与时间相关的,真空态在一段时间内会演变成非真空态。微扰计算的形式主义提供了一个扩展的狄拉克图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generally Covariant Theory of Quantized Dirac Field in de Sitter Spacetime
As a sequel to our previous work\cite{Feng2020}, we propose in this paper a quantization scheme for Dirac field in de Sitter spacetime. Our scheme is covariant under both general transformations and Lorentz transformations. We first present a Hamiltonian structure, then quantize the field following the standard approach of constrained systems. For the free field, the time-dependent quantized Hamiltonian is diagonalized by Bogliubov transformation and the eigen-states at each instant are interpreted as the observed particle states at that instant. The measurable energy-momentum of observed particle/antiparticles are the same as obtained for Klein-Gordon field. Moreover, the energy-momentum also satisfies geodesic equation, a feature justifying its measurability. As in \cite{Feng2020}, though the mathematics is carried out in terms of conformal coordinates for the sake of convenience, the whole theory can be transformed into any other coordinates based on general covariance. It is concluded that particle/antiparticle states, such as vacuum states in particular are time-dependent and vacuum states at one time evolves into non-vacuum states at later times. Formalism of perturbational calculation is provided with an extended Dirac picture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in High Energy Physics
Letters in High Energy Physics Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.20
自引率
0.00%
发文量
4
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信