Y. Zou, Wenya Li, Yishuang Tang, Yunquan Su, Xiawei Yang, Dong-Sheng Wu, Wei-bing Wang
{"title":"6061-zxalumium合金常规和协同双面FSW接头组织和力学性能的比较研究","authors":"Y. Zou, Wenya Li, Yishuang Tang, Yunquan Su, Xiawei Yang, Dong-Sheng Wu, Wei-bing Wang","doi":"10.1080/13621718.2023.2227815","DOIUrl":null,"url":null,"abstract":"In this study, synergistic double-sided friction stir welding (DS-FSW) is proposed to solve the problems of large deformation and the time-consuming of traditional DS-FSW. The microstructure, mechanical properties, and fracture paths of novel and conventional joints are studied under different welding parameters. Results show that defects in novel joints have been improved. However, the grain size in the stir zone of novel joints is larger than that of conventional joints. The microhardness map of the novel joint shows a more uniform distribution compared to that of the conventional joint. At a rotational speed of 1800 rpm and transverse speed of 1000 mm min−1, the distortion of the novel joint and conventional joint is 0.1 and 1 mm, respectively. The tensile force of novel joints is higher than that of conventional joints for the same welding parameters. The maximum tensile force of novel and conventional joints is 36.8 and 34.9 kN, respectively.","PeriodicalId":21729,"journal":{"name":"Science and Technology of Welding and Joining","volume":"28 1","pages":"784 - 791"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of microstructure and mechanical properties of conventional and synergistic double-sided FSW joints of 6061 zxaluminium alloy\",\"authors\":\"Y. Zou, Wenya Li, Yishuang Tang, Yunquan Su, Xiawei Yang, Dong-Sheng Wu, Wei-bing Wang\",\"doi\":\"10.1080/13621718.2023.2227815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, synergistic double-sided friction stir welding (DS-FSW) is proposed to solve the problems of large deformation and the time-consuming of traditional DS-FSW. The microstructure, mechanical properties, and fracture paths of novel and conventional joints are studied under different welding parameters. Results show that defects in novel joints have been improved. However, the grain size in the stir zone of novel joints is larger than that of conventional joints. The microhardness map of the novel joint shows a more uniform distribution compared to that of the conventional joint. At a rotational speed of 1800 rpm and transverse speed of 1000 mm min−1, the distortion of the novel joint and conventional joint is 0.1 and 1 mm, respectively. The tensile force of novel joints is higher than that of conventional joints for the same welding parameters. The maximum tensile force of novel and conventional joints is 36.8 and 34.9 kN, respectively.\",\"PeriodicalId\":21729,\"journal\":{\"name\":\"Science and Technology of Welding and Joining\",\"volume\":\"28 1\",\"pages\":\"784 - 791\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Welding and Joining\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13621718.2023.2227815\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Welding and Joining","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13621718.2023.2227815","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A comparative study of microstructure and mechanical properties of conventional and synergistic double-sided FSW joints of 6061 zxaluminium alloy
In this study, synergistic double-sided friction stir welding (DS-FSW) is proposed to solve the problems of large deformation and the time-consuming of traditional DS-FSW. The microstructure, mechanical properties, and fracture paths of novel and conventional joints are studied under different welding parameters. Results show that defects in novel joints have been improved. However, the grain size in the stir zone of novel joints is larger than that of conventional joints. The microhardness map of the novel joint shows a more uniform distribution compared to that of the conventional joint. At a rotational speed of 1800 rpm and transverse speed of 1000 mm min−1, the distortion of the novel joint and conventional joint is 0.1 and 1 mm, respectively. The tensile force of novel joints is higher than that of conventional joints for the same welding parameters. The maximum tensile force of novel and conventional joints is 36.8 and 34.9 kN, respectively.
期刊介绍:
Science and Technology of Welding and Joining is an international peer-reviewed journal covering both the basic science and applied technology of welding and joining.
Its comprehensive scope encompasses all welding and joining techniques (brazing, soldering, mechanical joining, etc.) and aspects such as characterisation of heat sources, mathematical modelling of transport phenomena, weld pool solidification, phase transformations in weldments, microstructure-property relationships, welding processes, weld sensing, control and automation, neural network applications, and joining of advanced materials, including plastics and composites.