{"title":"带负下标的F(2k)n=+F(2k)m解的上界","authors":"A. Pethö, L. Szalay","doi":"10.15446/recolma.v56n2.108374","DOIUrl":null,"url":null,"abstract":"In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts\",\"authors\":\"A. Pethö, L. Szalay\",\"doi\":\"10.15446/recolma.v56n2.108374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n2.108374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n2.108374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts
In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k.