Berestycki-Lions条件下Klein-Gordon-Maxwell系统非平凡解的存在性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiao-Qi Liu, Gui-Dong Li, Chunquan Tang
{"title":"Berestycki-Lions条件下Klein-Gordon-Maxwell系统非平凡解的存在性","authors":"Xiao-Qi Liu, Gui-Dong Li, Chunquan Tang","doi":"10.1515/anona-2022-0294","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following Klein-Gordon-Maxwell system: − Δ u − ( 2 ω + ϕ ) ϕ u = g ( u ) , in R 3 , Δ ϕ = ( ω + ϕ ) u 2 , in R 3 , \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{l}-\\Delta u-\\left(2\\omega +\\phi )\\phi u=g\\left(u),\\hspace{1.0em}{\\rm{in}}\\hspace{1em}{{\\mathbb{R}}}^{3},\\hspace{1.0em}\\\\ \\Delta \\phi =\\left(\\omega +\\phi ){u}^{2},\\hspace{1.0em}{\\rm{in}}\\hspace{1em}{{\\mathbb{R}}}^{3},\\hspace{1.0em}\\end{array}\\right. where ω \\omega is a constant that stands for the phase; u u and ϕ \\phi are unknowns and g g satisfies the Berestycki-Lions condition [Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345; Nonlinear scalar field equations. II. Existence of infinitelymany solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375]. The Klein-Gordon-Maxwell system is a model describing solitary waves for the nonlinear Klein-Gordon equation interacting with an electromagnetic field. By using variational methods and some analysis techniques, the existence of positive solution and multiple solutions can be obtained. Moreover, we study the properties of decay estimates and asymptotic behavior for the positive solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of nontrivial solutions for the Klein-Gordon-Maxwell system with Berestycki-Lions conditions\",\"authors\":\"Xiao-Qi Liu, Gui-Dong Li, Chunquan Tang\",\"doi\":\"10.1515/anona-2022-0294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the following Klein-Gordon-Maxwell system: − Δ u − ( 2 ω + ϕ ) ϕ u = g ( u ) , in R 3 , Δ ϕ = ( ω + ϕ ) u 2 , in R 3 , \\\\left\\\\{\\\\phantom{\\\\rule[-1.25em]{}{0ex}}\\\\begin{array}{l}-\\\\Delta u-\\\\left(2\\\\omega +\\\\phi )\\\\phi u=g\\\\left(u),\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{1em}{{\\\\mathbb{R}}}^{3},\\\\hspace{1.0em}\\\\\\\\ \\\\Delta \\\\phi =\\\\left(\\\\omega +\\\\phi ){u}^{2},\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{1em}{{\\\\mathbb{R}}}^{3},\\\\hspace{1.0em}\\\\end{array}\\\\right. where ω \\\\omega is a constant that stands for the phase; u u and ϕ \\\\phi are unknowns and g g satisfies the Berestycki-Lions condition [Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345; Nonlinear scalar field equations. II. Existence of infinitelymany solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375]. The Klein-Gordon-Maxwell system is a model describing solitary waves for the nonlinear Klein-Gordon equation interacting with an electromagnetic field. By using variational methods and some analysis techniques, the existence of positive solution and multiple solutions can be obtained. Moreover, we study the properties of decay estimates and asymptotic behavior for the positive solution.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0294\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0294","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这篇文章中,我们研究了以下克莱因-戈登-麦克斯韦系统:−Δu−(2ω+ξ{l}-\Δu-\left(2\omega+\phi)\phi u=g\leftω是表示相位的常数;u u和ξ\phi是未知数,g g满足Berestycki Lions条件[非线性标量场方程。I.基态的存在性,Arch.Romic Mech.Anal.82(1983),313–345;非线性标量场方程式。II.无限多解的存在性。Arch.Romical Mech.Anol.82(83),347–375]。克莱因-戈登-麦克斯韦系统是描述与电磁场相互作用的非线性克莱因-Gordon方程的孤立波的模型。利用变分方法和一些分析技术,可以得到正解和多解的存在性。此外,我们还研究了正解的衰变估计的性质和渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of nontrivial solutions for the Klein-Gordon-Maxwell system with Berestycki-Lions conditions
Abstract In this article, we study the following Klein-Gordon-Maxwell system: − Δ u − ( 2 ω + ϕ ) ϕ u = g ( u ) , in R 3 , Δ ϕ = ( ω + ϕ ) u 2 , in R 3 , \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}-\Delta u-\left(2\omega +\phi )\phi u=g\left(u),\hspace{1.0em}{\rm{in}}\hspace{1em}{{\mathbb{R}}}^{3},\hspace{1.0em}\\ \Delta \phi =\left(\omega +\phi ){u}^{2},\hspace{1.0em}{\rm{in}}\hspace{1em}{{\mathbb{R}}}^{3},\hspace{1.0em}\end{array}\right. where ω \omega is a constant that stands for the phase; u u and ϕ \phi are unknowns and g g satisfies the Berestycki-Lions condition [Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345; Nonlinear scalar field equations. II. Existence of infinitelymany solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375]. The Klein-Gordon-Maxwell system is a model describing solitary waves for the nonlinear Klein-Gordon equation interacting with an electromagnetic field. By using variational methods and some analysis techniques, the existence of positive solution and multiple solutions can be obtained. Moreover, we study the properties of decay estimates and asymptotic behavior for the positive solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信